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Abstract. The problem of invariant checking in parametric systems –
which are required to operate correctly regardless of the number and
connections of their components – is gaining increasing importance in
various sectors, such as communication protocols and control software.
Such systems are typically modeled using quantified formulae, describ-
ing the behaviour of an unbounded number of (identical) components,
and their automatic verification often relies on the use of decidable frag-
ments of first-order logic in order to effectively deal with the challenges
of quantified reasoning.

In this paper, we propose a fully automatic technique for invariant check-
ing of parametric systems which does not rely on quantified reason-
ing. Parametric systems are modeled with array-based transition sys-
tems, and our method iteratively constructs a quantifier-free abstraction
by analyzing, with SMT-based invariant checking algorithms for non-
parametric systems, increasingly-larger finite instances of the parametric
system. Depending on the verification result in the concrete instance, the
abstraction is automatically refined by leveraging canditate lemmas from
inductive invariants, or by discarding previously computed lemmas.

We implemented the method using a quantifier-free SMT-based IC3
as underlying verification engine. Our experimental evaluation demon-
strates that the approach is competitive with the state of the art, solving
several benchmarks that are out of reach for other tools.

Keywords: Parametric Systems ·Array-based transitions systems ·Abstraction-
refinement · SMT

1 Introduction

Parametric systems consist of a finite but unbounded number of components. Ex-
amples include communication protocols (e.g. leader election), feature systems,
or control algorithms in various application domains (e.g. railways interlocking
logics). The key challenge is to prove the correctness of the parametric system
for all possible configurations corresponding to instantiations of the parameters.

Parametric systems can be described as symbolic array-based transition sys-
tems [9], where the dependence on the configuration is expressed with first-order
quantifiers in the initial condition and the transition relation of the model.
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In this paper, we propose a fully automated approach for solving the uni-
versal invariant problem of array-based systems. The distinguishing feature is
that the approach, grounded in SMT, does not require dealing with quantified
theories, with obvious computational advantages. The algorithm implements an
abstraction-refinement loop, where the abstract space is a quantifier-free transi-
tion system over some SMT theories. Our inspiration and starting point is the Pa-
rameter Abstraction of [3,14], which we extend in two directions. First, we modify
the definition of the abstraction, by introducing a set of different environment
variables, which intuitively overapproximate the behaviour of all the instances
not precisely tracked by the abstraction, and by introducing a special stuttering
transition in which the environment is allowed to change non-deterministically.
Second, we combine the abstraction with a method for automatically inferring
candidate universal lemmas, which are used to strengthen the abstraction in case
of spurious counterexamples. The candidate lemmas are obtained by generaliza-
tion from the spuriousness proof carried out in a finite-domain instantiation of
the concrete system. However, we do not require quantified reasoning to prove
that they universally hold; rather, the algorithm takes into account the fact that
candidate lemmas may turn out not to be universally valid. In such cases, the
method is able to automatically discover such bad lemmas and discard them, by
examining increasingly-higher-dimension bounded instances of the parametric
system.

We implemented the method in a tool called Lambda. At its core, Lambda
leverages modern model checking approaches for quantifier-free infinite-state
systems, i.e. the SMT-based approach of IC3 with implicit abstraction [4], in
contrast to other approaches [18] where the abstract space is Boolean. In our
experimental evaluation, we compared Lambda with the state-of-the-art tools
MCMT [10] and Cubicle [6]. The results show the advantage of the approach,
that is able to solve multiple benchmarks that are out of reach for its competi-
tors.

The rest of the paper is structured as follows. In Section 2 we present some
logical background, and in Section 3 we describe array-based systems. We give
an informal overview of the algorithm in Section 4. In Section 5 we define the
abstraction and state its formal properties. In Section 6 we discuss the approach
to concretization and refinement, and we present the techniques for inferring
candidate lemmas. We discuss the related work in Section 7, and we present
our experimental evaluation in Section 8. Finally, in Section 9 we draw some
conclusions and present directions for future work. For lack of space, the proofs
of our theoretical results are reported in an Appendix.

2 Preliminaries

Our setting is standard first order logic. A theory T in the SMT sense is a pair
T = (Σ, C), where Σ is a first order signature and C is a class of models over
Σ. A theory T is closed under substructure if its class C of structures is such
that whenever M ∈ C and N is a substructure of M, then N ∈ C. We use the
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standard notions of Tarskian interpretation (assignment, model, satisfiability,
validity, logical consequence). We refer to 0-arity predicates as Boolean variables,
and to 0-arity uninterpreted functions as (theory) variables. A literal is an atom
or its negation. A clause is a disjunction of literals. A formula is in conjunctive
normal form (CNF) iff it is a conjuction of clauses. If x1, ..., xn are variables
and φ is a formula, we might write φ(x1, ..., xn) to indicate that all the variables
occurring free in φ are in x1, ..., xn.

If φ is a formula, t is a term and v is a variable which occurs free in φ, we write
φ[v/t] for the substitution of every occurrence of v with t. If t and v are vectors
of the same length, we write φ[v/t] for the simultaneous substitution of each vi
with the corresponding term ti. We use an if-then-else notation for formulae.
We write if φ1 then ψ1 elif φ2 then ψ2 elif . . . ψn−1 else ψn to denote the
formula (φ1 → ψ1) ∧ ((¬φ1 ∧ φ2)→ ψ2) ∧ . . . ((¬φ1 . . .¬φn−1 ∧ ¬φn)→ ψn).

Given a set of variables v, we denote with v′ the set {v′|v ∈ v}. A symbolic
transition system is a triple (v, I(v), T (v, v′)), where v is a set of variables, and
I(v), T (v, v′) are first order formulae over some signature. An assignment to
the variables in v is a state. A state s is initial iff it is a model of I(v), i.e.
s |= I(v). The states s, s′ denote a transition iff s ∪ s′ |= T (v, v′), also written
T (s, s′). A path is a sequence of states s0, s1, . . . such that s0 is initial and
T (si, s

′
i+1) for all i. We denote paths with π, and with π[j] the j-th element of

π. A state s is reachable iff there exists a path π such that π[i] = s for some i. A
variable v is frozen iff for all π, i it holds that π[i](v) = π[0](v). In the following,
when we define a frozen variable v, we assume that this is done by having a
constraint v′ = v as a top-level conjunct of the transition formula. A formula
φ(v) is an invariant of the transition system C = (v, I(v), T (v, v′)) iff it holds
in all the reachable states. Following the standard model checking notation, we
denote this with C |= φ(v).1 A formula φ(v) is an inductive invariant for C iff
I(v) |= φ(v) and φ(v) ∧ T (v, v′) |= φ(v′).

3 Modeling Parametric Systems as Array-based
Transition Systems

3.1 Array-based Transition Systems

In order to describe parametric systems, we adapt from [9] the notion of array-
based systems. In the following, we fix a theory of indexes TI = (ΣI , CI) and a
theory of elements TE = (ΣE , CE). In order to model the parameters, we require
that the class CI is closed under substructure. Then with AEI we denote the
theory whose signature is Σ = ΣI ∪ ΣE ∪ {[ ]}, and a model for it is given by
a set of total functions from a model of TI to a model of TE . In general, we

1 Note that we use the symbol |= with three different denotations: if φ, ψ are formulae,
φ |= ψ denotes that ψ is a logical consequence of φ; if µ is an interpretation, and ψ is
a formula, µ |= ψ denotes that µ is a model of ψ; if C is a transition system, C |= ψ
denotes that ψ is an invariant of C. The different meanings will be clear from the
context.
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can have several array theories with multiple sorts for indexes and elements.
For simplicity, we fix only an index sort and an elem sort. In the following, an
array-based transition system

C = (a, ι(a), τ(a, a′))

is a symbolic transition system, with the additional constraints that:

– a is a variable of sort index 7→ elem. We use a single variable for the sake
of simplicity: additional variables of arbitrary type (also of index or element
type) can be added without loss of generality.

– ι(a) is a first-order formula of the form ∀i.φ(i, a[i]), where i is of index sort
and φ is a quantifier-free formula.

– τ(a, a′) is a finite disjunction of formulae, ∨nk=1τk, such that every τk is a
formula of the following type (with i, j of index sort):

∃i∀j.ψ(i, j, a[i], a[j], a′[i], a′[j])

with ψ a quantifier-free formula.

This syntactic requirement subsumes the common guard and update formalism
used for the description of parametric systems, used e.g in [9, 11,14].

In the following, we shall refer to the disjuncts τk of τ as transition rules (or
simply rules when clear from the context).

An array-based transition system can be seen as a family of transition sys-
tems, one for each cardinality of the finite models MI of TI . In the following,
given d an integer, we denote with Cd the finite instance of C of size d obtained
by instantiating the quantifiers of C over a set of fresh index variables of car-
dinality d (considered implicitly different from each other). Note that this Cd

is a symmetric presentation [14]: if c = {c1, . . . , cd} are the fresh index vari-
ables, and σ is a permutation of c, we have that, for every formula φ(c, a[c]),
Cd |= φ(c, a[c])⇔ Cd |= φ(σ(c), a[σ(c)]).

Example 1 (Mutex Protocol for Ring Topology). Here we describe a simple pro-
tocol for accessing a shared resource, with processes in a ring-shaped topol-
ogy. As an index theory, we use the finite sets of integers. As an element the-
ory, we use both the Booleans and an enumerated data type of two elements,
namely {idle, critical}. The array variable t, with sort index 7→ boolean, is
true in an index variable x if x holds the token. The variable s, with sort
index 7→ {idle, critical} holds the current state of the process. In addition,
we have an integer frozen variable length, which represents the length of the
ring. The transition system is described by the following formulae:

Initial states. Initially, only one process holds the token, and every process is
idle. We model this initial process with an additional constant init token
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of sort index. Moreover, each index is bounded by the value of length. The
initial formula is:

∀j.p[j] = idle ∧ j ≥ 1 ∧ j ≤ length ∧ length > 0

∧

{
if j = init token then t[j] = true

else t[j] = false

Transition rule 1. A process which holds the token can enter the critical sec-
tion:

∃i.s[i] = idle ∧ t[i] = true ∧ s′[i] = critical ∧ t′[i] = t[i]∧
∀j, j 6= i.(s′[j] = s[j] ∧ t′[j] = t[j])

Transition rule 2. A process exits from the critical section and passes the
token to the process at its right:

∃i. ∧ s[i] = critical ∧ s′[i] = idle ∧ t′[i] = false∧

∀j, j 6= i.


if j = 1 ∧ i = length then s′[j] = s[j] ∧ t′[j] = true

elif j = i+ 1 ∧ i < length then s′[j] = s[j] ∧ t′[j] = true

else s′[j] = s[j] ∧ t′[j] = t[j]

3.2 Universal invariant problem for array-based systems

In the following, given an array-based transition system

C = (a, ι(a), τ(a, a′)),

the universal invariant problem is the problem of proving (or disproving) that a

formula of the form Φ
def
= ∀i.φ(i, a[i]) is an invariant for C.

Guard Strengthening In order to prove that ∀i.φ(i, a[i]) is an invariant of a
system C = (a, ι(a), τ(a, a′)), we can first strengthen the rules of C by adding the
candidate invariant in conjunction with the transition relation, and then prove
that the formula is an invariant of the newly-restricted system. This induction
principle is justified by the following proposition:

Proposition 1 (Guard strenghtening [14]) Let C = (a, ι(a), τ(a, a′)) be a
transition system and let Φ be ∀i.φ(i, a[i]). Let CΦ = (a, ι(a), τ(a, a′)∧Φ) be the
guard-strengthening of C with respect to Φ. Then, if Φ is an invariant of CΦ, it
is also an invariant of C.

Prophecy variables The universal quantifiers in the candidate invariant can
be replaced with fresh frozen variables, called prophecy variables, that intuitively
contain the indexes of the processes witnessing the violation of the property.
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Fig. 1. An overview of the algorithm. C is an array-based transition system; Φ is a

quantified candidate invariant; Ψ
def
= {ψ1, . . . ψn} is the set of candidate lemmas; CΦ∧Ψ

is a quantified transition system resulting from the strengthening of C; C̃Φ∧Ψ is a
quantifier-free transition system.

Proposition 2 (Removing quantifiers [18]) Let C = (a, ι(a), τ(a, a′)) be an
array-based system. The formula ∀i.φ(i, a[i]) is an invariant for C iff the formula
φ(p, a[p]) is an invariant for C+p = (a∪p, ι(a), τ(a, a′)), where p is a set of fresh
frozen variables of index sort.

For better readability, in the following we will omit the subscript +p. More-
over, we assume that the index variables universally quantified in the candidate
invariant are considered to be different. This does not limit expressiveness, and
simplifies our discourse. Therefore, the prophecy variables induced by a candi-
date invariant are considered to be implicitly different.

Example 2. In the ring protocol example, the universal invariant property that
we want to prove is mutual exclusion, i.e. ∀i, j.¬(s[i] = critical∧s[j] = critical).
By introducing the prophecy variables we obtain ¬(s[p1] = critical ∧ s[p2] =
critical).

4 Overview of the Method

In the following, let an array-based transition system C
def
= (a, ι(a), τ(a, a′)), and

a candidate universal invariant Φ
def
= ∀i.φ(i, a[i]) for C be given.

We now summarize the algorithm that attempts to solve the universal invari-
ant problem for C and Φ. The algorithm, depicted in Figure 4, iterates trying
either to construct an abstraction sufficiently precise to prove the property (exit
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with Safe), or to find a finite instantiation of the problem exhibiting a concrete
counterexample (exit with Unsafe). The abstract space is quantifier-free, and
obtained by instantiating the universally quantified formulae over two sets of in-
dex variables: the prophecy variables, which arise from the candidate invariant
(as explained in Proposition 2), and are denoted with p; and the environmen-
tal variables, denoted with x, which arise from the transition formula and are
intended to represent the environment surrounding the p indexes, interacting
with them in the behaviour leading to the violation. While prophecy variables
are frozen, thus representing the same indexes for the whole run, environmental
variables are free to change at each time step, hence producing possibly spuri-

ous behaviours. The algorithm maintains a set of candidate lemmas Ψ
def
= {Ψi}i,

composed of universally quantified formulae, that are used to strengthen the
property and to tighten the abstraction. Initially, Ψ is empty. In the following, if
Cd is a finite instance of C and Φ is a candidate universal invariant, with Φd we
denote the formula obtained from Φ by instantiating the quantifiers in variables
used for the domain of cardinality d.

At each iteration, we carry out the following high-level steps (described in
detail in the next sections):

– the property Φ to be proved is conjoined with the candidate lemmas in Ψ ,
and its quantifiers are moved in prenex form;2

– we construct the guard-strengthening CΦ∧Ψ (cfr. Proposition 1), conjoining
Φ ∧ Ψ to the transition rules of C;

– we compute our modified Parameter Abstraction of CΦ∧Ψ (defined in §5.1).
First, we define the necessary prophecy variables p and environmental vari-
ables x. Then, we instantiate the quantifiers obtaining the quantifier-free
array transition system C̃Φ∧Ψ .

– we (try to) solve the invariant checking problem C̃Φ∧Ψ |= Φ̃ ∧ Ψ̃ by calling a
model checker for quantifier-free transition systems. Φ̃ ∧ Ψ̃ is obtained from
Φ ∧ Ψ by removing quantifiers with prophecy variables, as in Proposition 2

– if the model checker concludes that there is no violation, then Φ holds in C
(for the properties of the Parameter Abstraction), and we exit with Safe.

– otherwise, we try to check whether the property violation in the abstract
space corresponds to a real counterexample. We do so by checking whether
the current property Φ ∧ Ψ is falsified in Cd, a suitable finite instance of C.
That is, we check whether Cd |= (Φ ∧ Ψ)d.

– if Cd |= (Ψ ∧ Φ)d, then the abstraction must be tightened. When the verifi-
cation of the finite instance succeeds, an inductive invariant Id is produced,
which is used to compute (candidate) lemmas by generalization from d to
the universal case.

– if Cd 6|= (Ψ ∧Φ)d, two cases are possible. First, we check if the (instantiation
of the) property Φ is indeed violated. If so, we exit with Unsafe, and we pro-
duce a concrete counterexample to the original problem, finitely witnessed
in Cd.

2 In the following, with Φ ∧ Ψ we denote the prenex form Φ ∧
∧
i Ψi
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– However, it is also possible that Cd does not violate Φd, but it falsifies some
lemmas. In fact, the candidate lemmas obtained at previous iterations, by
generalization on Cd

−
with d− 6= d, may not hold universally in C. In that

case, the bad lemmas must be fixed, and the iteration is restarted.

When the algorithm terminates with Unsafe, we are able to exhibit a finite
counterexample trace in a finite instance of C violating the property. When
the algorithm terminates with safe, then the property holds in C. The result
is obtained by the following chain of implications: from Theorem 3, stated in
the next section, we have that C̃Φ∧Ψ |= Φ̃ ∧ Ψ̃ implies CΦ∧Ψ |= Φ̃ ∧ Ψ̃ . From
Proposition 2, we have that CΦ∧Ψ |= Φ ∧ Ψ . Therefore, from Proposition 1, we
have C |= Φ ∧ Ψ . In particular, we have C |= Φ.

5 Modified Parameter Abstraction

We describe here our Parameter Abstraction. The first version of this approach
was introduced in [3], and later formalized in [14]. In the following, we describe
a novel version of the abstraction, and how it can be applied to array-based
transition systems. The main novelty is that, instead of using a special abstract
index “∗” that overapproximates the behaviour of the system in the array loca-
tions that are not explicitly tracked, we use n environmental (index) variables
which are not abstracted, but are allowed to change nondeterministically in some
transitions. This can be achieved by the usage of an additional stuttering tran-
sition: this rule allows the environmental variables to change value arbitrarily,
while not changing the values of the array in the prophecies.

5.1 Abstraction Computation

Let an array-based transition system C and a universal invariant Φ be given3.
By conjoining Φ to the transition rules in C, we obtain CΦ, the guard strength-
ening of C with respect to Φ. Then, we define two sets of variables: the prophecy
variables p, in number determined by Proposition 2, and the environmental vari-
ables x, in number determined by the greatest existential quantification depth
in the transition rules of CΦ. While the prophecies are frozen variables, the in-
terpretation of the environmental variables is not fixed. Moreover, we assume
that the values taken by p and x are different. We now define C̃, the parameter
abstraction of C.

Initial formula Let ι(a) be ∀i.φ(i, a[i]), the initial formula of C in prenex
form, with φ(i, a[i]) quantifier-free. The initial formula of the abstract system is
a quantifier-free first order formula, denoted ι̃(p, a[p]) obtained by instantiating
all the universal quantifiers in ι over the set of prophecy variables p.

3 These represent the system and the property in input to each iteration of the loop.
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Transition formula The transition formula of CΦ is still represented by a
disjuction of formulae of the form4

τ(a, a′)
def
= ∃i∀j.ψ(i, j, a[i], a[j], a′[i], a′[j]).

For simplicity, we can assume that we have only one rule τ(a, a′). First, we
compute the set of all substitutions of the i over p ∪ x, and we consider the set
of formulae {τ̃j(p, x, a, a′)}, where j ranges over the substitutions, and τ̃j is the
result of applying the substitution to τ .

Then, for each formula in the set {τ̃j}, we instantiate the universal quanti-
fiers over the set p ∪ x, obtaining a quantifier-free formula over prophecy and
environmental variables.

Moreover, we consider an additional transition formula, called the stuttering
transition, defined by:

τ̃S
def
=

∧
p∈p

a′[p] = a[p] ∧ p′ = p

The disjunction of all the abstracted transition formulae is the transition
formula τ̃ . So, we can now define the transition system

C̃
def
= ({a, p, x}, ι̃(p, a[p]), τ̃(p, x, a[p ∪ x], a′[p ∪ x])).

Example 3. We apply the abstraction procedure to the transition rule 2 of the
token in the ring protocol of Example 1.

Since the invariant is the formula ∀i, j.¬(s[i] = critical ∧ s[j] = critical) it fol-
lows that we have two prophecy variables p1, p2. Recall that the invariant itself is
added to the transition as an additional conjunct. Since the existential quantifi-
cation depth is one, we have only one environment variable x1. In the abstraction
system we obtain three transition formulae from the original transition; we re-
port the one indexed by the substitution mapping i into x1; such a formula is
equivalent to the following:

s[x1] = crit ∧ t[x1] = true ∧ s′[x1] = idle ∧ t′[x1] = false∧

∧
j∈{p1,p2}


if j = 1 ∧ x1 = length then s′[j] = s[j] ∧ t′[j] = false

elif j = x1 + 1 ∧ x1 < length then s′[j] = s[j] ∧ t′[j] = false

else s′[j] = s[j] ∧ t′[j] = t[j]∧
i,j∈{p1,p2,x1}

i 6=j

¬(s[i] = critical ∧ s[j] = critical)

4 Possibly by performing trivial logical manipulations to distribute the guard strength-
ening inside the rules.
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5.2 Stuttering Simulation

We define here the stuttering simulation induced by our version of the Parameter
Abstraction. The proof of the main theorem can be found in the appendix. The
stuttering is induced by τ̃S : this is a weaker version than the simulation induced
by [14], yet it is sufficient for preserving invariants.

Definition 1 (Stuttering Simulation) Given two symbolic transition systems
C1 = (x1, ι1, τ1) and C2 = (x2, ι2, τ2), with sets of states S1 and S2, a stuttering
simulation S is a relation S ⊂ S1 × S2, such that:

– for every s1 ∈ S1 such that s1 |= ι1, there exists some s2 ∈ S2 such that
(s1, s2) ∈ S and s2 |= ι2;

– for every (s1, s2) ∈ S, and for every s′1 ∈ S1 such that s1 ∪ s′1 |= τ1, there
exists either some s′2 ∈ S2 such that (s′1, s

′
2) ∈ S and s2 ∪ s′2 |= τ2, or some

(s′2, s
′′
2) ∈ S2 × S2 such that (s′1, s

′′
2) ∈ S, and s2 ∪ s′2 |= τ2, s′2 ∪ s′′2 |= τ2.

If such a relation exists, we say that C2 stutter simulates C1.

We write S(s1) for {s2|(s1, s2)} ∈ S. We recall that stutter simulation pre-
serves reachability, i.e. if C2 stutter simulates C1, then if s1 is reachable in C1

then the set S(s1) is reachable in C2. Formally, the stuttering simulation induced
by the Parameter Abstraction is defined as follows.

Definition 2 (Simulation) Let C be the original transition system and let C̃
be its Parameter Abstraction. Let s and s̃ denote states of C and C̃, respectively.
We define S as follows:

S(s, s̃) iff s(a)[i] = s̃(a)[i] for all i ∈
⋃
p∈p

s̃(p).

Intuitively, we require that in the concrete state s and the abstract state s̃,
the array is interpreted in the same way for all the locations referred by the
prophecy variables. We then have the following:

Theorem 3. The relation S is a stuttering simulation between C and C̃. More-
over, if C̃ |= Φ(p, a[p]), then C |= Φ(p, a[p]).

6 Refinement

6.1 Concretization

If Φ(p, a[p]) does not hold in C̃, in general we cannot conclude anything, since the
abstraction could be too coarse. So, if an abstract counterexample is encountered,
we try to explore a small instance of the system to see if this counterexample
occurs in it. To choose the appropriate size, our algorithm keeps a counter d,
whose value is equal to the size to explore. Initially, d is equal to the number
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of (universally-quantified) index variables in the property Φ.5 When an abstract
counterexample is encountered, we check whether Cd |= (Φ∧Ψ)d. For this check,
we use a model checker able to return, in case of success, an inductive invariant
Id. From the inductive invariant we compute some first order formulae J which
will be a new set of candidate lemmas. We will see later how to obtain this
generalization. After computing the new lemmas, we set d = d + 1. If a con-
crete counterexample is found, then there are two cases: (i) the counterexample
falsifies the original property, and we exit from the algorithm with a concrete
counterexample; (ii) the counterexample falsifies some lemmas; in this case we
remove the lemma and restart the loop (without changing d).

6.2 From Invariants to Universal Lemmas

Definition 3 Let d be an integer, and let Id be a set of clauses containing
d variables. A generalization of Id is a first-order formula J such that, when
evaluating the quantifiers in J in a domain with precisely d elements, we obtain
a formula equivalent to Id.

We use the following technique for generalization. Suppose that Id is in CNF,
and that we used c1, . . . , cd as variables for an instance with d elements. Then,
Id = C1 ∧ · · · ∧ Cn is a conjunction of clauses. From each of those clauses we
will obtain a new candidate lemma. Let AllDiff (i) be the formula which states
that all variables in i are different from each other. Since every Cd is given by
a symmetric presentation [14], we have that, for every i ∈ {1, . . . , n}, Cd |=
∀i1, . . . , ih.AllDiff (i1, . . . , ih) → Ci(i1, . . . , ih), where the quantifiers range over
c1, . . . , cd and h ≤ d is the number of variables which occur in Ci. This means

that J
def
=

∧
i ∀i.AllDiff (i)→ Ci(i) is a generalization of Id. In our algorithm, we

add the set {∀i.Ci(i)}ni=1 of new candidate lemmas to Ψ . Note that we omitted
the formula AllDiff for our assumption on the different values of index variables.

Example 4. Let C̃ be the result of the abstraction procedure of the ring protocol
of Example 1. An abstract counterexample for the property is given by a trace
where the environmental variable takes the token twice (with stuttering transi-
tions), and then it passes it to both prophecy variables, which can then enter
the critical section. Therefore, we compute C2, the finite instance with exactly
two indexes, and we check if the property holds in it. The property does hold,
and we obtain an inductive invariant:

I2 = (t[c1] = false ∨ t[c2] = false) ∧ (p[c1] = idle ∨ t[c1] = true) ∧ ...

where the dots denote some other clauses which are equal up to a symmetry to

c1 or c2. If we generalize the first two clauses, we have the two formulae: ψ1
def
=

∀i, j.i 6= j → t[i] = false ∨ t[j] = false, and ψ2 = ∀i.p[i] = idle ∨ t[i] = true,

5 Recall that we assume that quantified index variables are required to be different.
Therefore, the property holds vacuously on instances of size smaller than the number
of index variables in Φ.



12 Alessandro Cimatti, Alberto Griggio, and Gianluca Redondi

such that ψ2
1 ∧ ψ2

2 is equivalent to I2. After the guard strengthening process,
the new lemmas are enough to block all the spurious counterexamples, and the
property is proved.

Fixing Unsound Lemmas Unfortunately, we know a priori that a lemma
holds only for the instance from which it was generalized. In general, its universal
generalization obtained as outlined above might not hold in the system.

Suppose that the formula ψ1 is a candidate lemma, obtained by generaliza-
tion after the successful verification of an instance of size d. Suppose that later,
a counterexample for ψ1 is found by exploring a different instance Cd

′
(with

d′ > d). This means that the lemma ψ1 does not hold universally, but only for
some finite instances of the system (including Cd), and not in general. In this
case, we simply remove ψ1 from the set of candidate lemmas Ψ , thus effectively
weakening our working property (from Φ∧Ψ to Φ∧ (Ψ \ {ψ1})). While this may
cause a particular (abstract) counterexample to be encountered more than once
during the main loop of the algorithm, since the finite instances are explored
monotonically and their size d is increased after every successful verification
of a bounded instance, the overall procedure still makes progress by exploring
increasingly-large instances of the system. The hope is that eventually the algo-
rithm will discover enough good lemmas that block the abstract counterexample.
This notion of (weak) progress is justified by the following:

Proposition 4 Let π̃ be an abstract counterexample, Ψ be the current set of
universally quantified lemmas, and d be the size of the bounded instance to ex-
plore. During every execution of the algorithm, the same triple (π̃, Ψ, d) never
occurs twice.

7 Related Work

Parametric verification is a challenging problem, and there is a large body of
work in the literature devoted to this problem. Here, we (necessarily) focus on
the approaches that are most related to ours.

Several methods are based on quantifier elimination using decidable frag-
ments of first order logic, with notable examples in [6, 9, 21]. These methods
guarantee a high degree of automation, but typically impose strong syntactic
requirements in the input problem, and may suffer from scalability issues. A
second popular approach is based on abstraction and abstraction refinement.
Within this family of abstractions, earlier versions of the Paramater Abstrac-
tion [3, 14] have been used successfully also for industrial protocols [23]. The
main drawback is that the degree of automation is limited, and substantial ex-
pertise is required to obtain the desired results. The first steps of our abstraction
algorithm are inspired by the ones in [18] and [14]. The key difference from [18]
is that in that work the abstract transition system C̃ is given by an eager propo-
sitional abstraction, with the axioms of the background theories recovered by
the usage of some schemata. Here we retain the theory of arrays in the abstract
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space C̃. Moreover, differently from both [14] and [18], our procedure includes
an automatic refinement of the abstraction in a counterexample-driven manner.

Ivy [19, 21] implements both semi-automatic invariant checking with decid-
able logics (namely, Effectively Propositional Logic – EPR) and compositional
abstraction with eager axioms [18]. MyPyvy [12,13] is a model checker inspired
by the language of Ivy. It implements a version of IC3 capable of dealing with uni-
versal formulas [12]; the algorithm is completely automatic, but it is still based
on quantifier elimination via reduction to decidable logics. In a more recent work,
MyPyvy has gained the capability of inferring invariants with quantifier alter-
nations, using a procedure that combines separators and first-order logic [13]. At
the moment, our framework is capable of handling only universally quantified
invariants. On the other hand, our approach is not limited to EPR, but it can
in principle handle formulae with arbitrary SMT theories.

Exploring small instances of a parameterized system for candidate lemmas
is a popular approach for parametric verification. In [7], this idea is used to
over-approximate backward reachable states inside an algorithm which combines
backward search and quantifier elimination. In [15], a finite-instance exploration
is used together with a theorem prover to check the validity of candidate lemmas.
In [16], candidate invariants are obtained from the set of reachable states of
small instances. Similarly to our approach, these lemmas are used to strengthen
an earlier version of the parameter abstraction. However, human intervention is
still needed for the refinement.

A similar approach is presented in [22], where lemmas are obtained from a
generalization of the proof of the property in a small instance of the protocol.
The main difference with our technique, besides the methods used to extract
such invariants, is the following: in [22], the authors show that to prove that a
property (conjoined with lemmas) is inductive for all N , it is enough to prove
that it is inductive for a particular N0, which is computable from the number
of variables in the description of the system. This result is obtained from the
imposed syntactic structure of the system. On the other hand, we impose less
structure, and we rely on proving the property in an abstract version (and not
a concrete instance) of the system. Moreover, our approach is integrated in an
abstraction/refinement loop, which is missing from [22].

Another SMT-based approach for parametric verification is in [11]. The
method is based on a reduction of invariant checking to the satisfiability of
non-linear Constrained Horn Clauses (CHCs). Besides differing substantially in
the overall approach, the method is more restrictive in the input language, and
handles invariants only with a specific syntactic structure.

The use of prophecy variables for inferring universally quantified invariants
has been explored also in non-parametric contexts, such as [17]. The main dif-
ference with our work is that [17] focuses on finding quantified invariants for
quantifier-free transition systems with arrays, rather than array-based systems
with quantifiers. The overall abstraction-refinement approach is also substan-
tially different.
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8 Experimental Evaluation

We have implemented our algorithm in a tool called Lambda (for Learning
Abstractions froM BoundeD Analysis). Lambda is written in Python, and
uses the SMT-based IC3 with implicit predicate abstraction of [4] as underly-
ing quantifier-free verification engine.6 Lambda accepts as input array-based
systems specified either in the language of MCMT [10] or in VMT format (a
light-weight extension of SMT-LIB to model transition systems [24]). In case
of successful termination, Lambda generates either a counterexample trace (for
violated properties) in a concrete instance of the parametric system, or a quanti-
fied inductive invariant that proves the property for any instance of the system.
In the latter case, Lambda can also generate proof obligations that can be in-
dependently checked with an SMT solver supporting quantifiers, such as Z3 [20]
or CVC4 [2]. More specifically, the quantified inductive invariant can be gener-
ated by Lambda by simply universally quantifying all the (index) variables in
the inductive invariant generated for C̃, and conjoining it with the lemmas Ψ
discovered during the main loop iterations. Computing such an invariant is im-
mediate after the termination of the algorithm, and does not require additional
reasoning.

In order to evaluate the effectiveness of our method, we have compared
Lambda with two state-of-the-art tools for the verification of array-based sys-
tems, namely Cubicle [6] and MCMT. We could not include MyPyvy in the
comparison, due to the many differences in input languages and modeling for-
malisms, which make an automatic translation of the benchmarks very difficult.
We would also have liked to compare with the technique of [11], however the
prototype tool mentioned in the paper doesn’t seem to be available.

For our evaluation, we have collected a total of 116 benchmarks, divided in
three different groups:
Protocols consists of 42 instances taken from the MCMT or the Cubicle dis-
tributions, and used in previous works on verifcation of array-based systems. We
have used all the instances which were available in both input formats, and we
have split benchmarks containing multiple properties into different files.
DynArch consists of 57 instances of verification problems of dynamic architec-
tures, taken from [5]. These benchmarks make use of arithmetic constraints on
index terms, which are not supported by Cubicle. Therefore, we could only
compare Lambda with MCMT on them.
Trains consists of 17 instances derived by (a simplified version of) verifica-
tion problems on railway interlocking logics [1]. These benchmarks make use of
several features that are not fully supported by Cubicle and MCMT (such
as non-functional updates in the transition relation, transition rules with more
than one universally-quantified variable, real-valued variables). None of such re-
strictions applies to Lambda, which in general accepts models with significatly

6 In our implementation, we use the theory of integers as an index theory. At first, this
may seem odd, since we should consider all finite subsets of the integers. However,
this is not a problem, since the satisfiability of a quantifier-free UFLIA formula is
equivalent to its satisfiability in a finite index model.
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Table 1. Summary of experimental results.

Lambda MCMT Cubicle
Benchmark family # of instances Solved Unique Solved Unique Solved Unique
Protocols 42 34 3 24 0 30 1
DynArch 57 48 5 48 5 – –
Trains 17 17 – – – – –

fewer syntactic constraints than Cubicle and MCMT. Since these instances
are inspired by relevant real-world verification problems, we believe that it is
interesting to include them in the evaluation even though we could only run
Lambda on them.

Our implementation, all the benchmarks, and the scripts for reproducing the
results are available at http://es-static.fbk.eu/people/griggio/papers/cade21-lambda.
tar.gz. We have run our experiments on a cluster of machines with a 2.90GHz
Intel Xeon Gold 6226R CPU running Ubuntu Linux 20.04.1, using a time limit
of 1 hour and a memory limit of 4GB for each instance. We have used the de-
fault settings for MCMT, whereas for Cubicle we have also enabled the BRAB
algorithm.7 A summary of the results of our evaluation are presented in Table 2.
More details are provided in Appendix A.2.

Overall, Lambda is very competitive with the state of the art, and in fact
it solves the largest number of instances (even when disregarding the Trains
group, which cannot be handled by the other tools).When considering the Pro-
tocols group, Cubicle is often significantly faster than Lambda (see also Ta-
ble 2 in Appendix A.2), especially on easier problems, thanks to its explicit-state
exploration component (part of the BRAB algorithm). However, the symbolic
techniques used by Lambda allow it to generally scale better to larger, more
challenging problems: in the end, Lambda solves 4 more instances than Cu-
bicle, and 10 more than MCMT. The situation is different for the DynArch
group, in which Lambda and MCMT solve the same number of instances. How-
ever, it is interesting to observe that both tools can solve 5 instances that the
other tool cannot solve; more in general, it seems that the two approaches have
somewhat complementary strengths (this can be seen clearly from Table 3 in
Appendix A.2). Moreover, as already stated above, the fact that Lambda im-
poses significantly less syntactic restrictions than the other two tools considered
allowed it to handle all the instances of the Trains group, which cannot be easily
modeled in the languages of MCMT or Cubicle.

Finally, we wish to remark that we have generated SMT proof obligations for
checking the correctness of all the (universally quantified) inductive invariants
produced by Lambda, and checked them with both CVC4 and Z3. None of the
solvers reported any error, and overall the combination of the two solvers was able
to successfully verify all the proof obligations for 65 of the 67 instances reported

7 The results reported were obtained using -brab 2; we have however experimented
also with other (small) values for -brab, without noticing any significant difference.

http://es-static.fbk.eu/people/griggio/papers/cade21-lambda.tar.gz
http://es-static.fbk.eu/people/griggio/papers/cade21-lambda.tar.gz
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as safe.8 We believe that the fact that we can easily produce proof obligations
that can be independently checked is another strength of our approach. This is
in contrast to the approach of Cubicle, where generating proof obligations is
nontrivial [8].

9 Conclusions

In this paper we tackled the problem of universal invariant checking for paramet-
ric systems. We proposed a fully-automated abstraction-refinement approach,
based on quantifier-free reasoning. The abstract model, that stutter simulates
the concrete model, is a quantifier-free symbolic transition system refined by (the
instantiation of) candidate universal lemmas. These are obtained by analyzing
the proofs of validity of the property in a finite instance of the parametric system.
We experimentally evaluated an implementation on standard benchmarks from
the literature. The results show the effectiveness of the method, also in compar-
ison with state-of-the-art tools (Cubicle, MCMT). We are able to prove, in a
fully automated manner and without manual intervention, several benchmarks
that are considered challenging. In the future, we plan to work on generalization,
to improve the ability of inferring the right lemmas from a small instance, and
to find more effective ways to filter out bad candidates. On the theoretical side,
we will investigate the relation between the termination of the algorithm and
decidable classes of parametric systems (e.g. those that enjoy a cut-off prop-
erty). Finally, we will work on the verification of temporally extended properties
which are also preserved by stuttering simulations (such as fragments of Linear
Temporal Logic).
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A Appendix

A.1 Proofs of section 5

We report here the technical results for the proof of Theorem 3. Note that a
state s̃ of C̃ consists of both an assignment of the array variable a and of the
index variables p ∪ x. With a small abuse of notation we do not distinguish the
two cases.

Remark 1 In the following, since we assumed that the values taken by p are
different, we also assume that the cardinialities of all index modelsMI are equal
or greater than the length of p. This requirement is not a real limitation: initially,
this can be assumed since the property vacuously holds in models with cardinality
less than p. Moreover, the size of p can increase only if the property has been
proved in all the finite models with lesser size.

First, we need the following key proposition.

Proposition 5 Let s̃ be a state of C̃. Let µ be an interpretation of p such
that µ(p) = s̃(p). Let φ(p, a[p]) be a quantifier free formula which contains only
prophecies as index variables. Then, for any state s of C such that S(s, s̃),

s̃ |= φ(p, a[p])⇔ s, µ |= φ(p, a[p])

Proof. Note that a model for a function is uniquely determined by the values on
its domain. So, if M is a model for the total functions from MI to ME , then

M |= φ(µ(p), s(a)[µ(p)])

is equivalent to

N |= φ(µ(p), s(a)[µ(p)]), (1)

where N is obtained from M by restricting all the interpretation of the index
variables to the substructure ofMI generated by the elements in µ(p) (note that

N is still a model for AEI since TI is closed under substructure). Similarly, for
any model M′

M′ |= φ(s̃(p), s̃(a)[s̃(p)])

is equivalent to

N ′ |= φ(s̃(p), s̃(a)[s̃(p)]), (2)

where N ′ defined similarly as above. Since µ(p) = s̃(p), we have N = N ′.
Moreover, from the definition of S, s and s̃ assign a to the same function, so (1)
and (2) are equivalent.

Lemma 1. If s |= ι(a), then there exists some s̃ such that S(s, s̃) and s̃ |=
ι̃(p, a[p]).
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Proof. Let s be an assignment into a modelM, with index domainMI , and let
m be the length of i. Then,

ι̃(p, a[p]) =
∧

pi1 ,...,pim⊆pm
φ(pi1 , . . . , pim , a[pi1 , . . . , pim ]).

Let µ̃ an (injective) assignment of the prophecy variables p into MI . Let s̃
defined as the restriction of s over µ̃(p) and such that s̃(p) = µ̃(p). By definition,
(s, s̃) ∈ S. Then, by Proposition 5, we have

s̃ |= ι̃(p, a[p])⇔ s, µ̃ |= ι̃(p, a[p]).

Since the formula ι(a)→ ι̃(µ̃(p), a[µ̃(p)]) is valid, and s |= ι(a) by hypothesis,
the claim follows. ut

Lemma 2. If s ∪ s′ |= τ(a, a′), then for every s̃ such that (s, s̃) ∈ S, either:

– there exists a rule τ̃ and some s̃′, such that s̃ ∪ s̃′ |= τ̃ and (s′, s̃′) ∈ S; or
– there exist a rule τ̃ and some s̃′, s̃′′, such that s̃ ∪ s̃′ |= τ̃S, s̃′ ∪ s̃′′ |= τ̃ , and

(s′, s̃′′) ∈ S.

Proof. We first consider the simpler case of one prophecy variable p and one
environmental variable x. By hypothesis,

s ∪ s′ |= ∃i∀j.ψ(i, j, a[i], a[j], a′[i], a′[j]).

Hence, there exists an interpretation µ of i in an element of MI such that

s ∪ s′ |= ∀j.ψ(µ(i), j, a[µ(i)], a[j], a′[µ(i)], a′[j]). (3)

Let’s also fix a state s̃ of C̃, such that S(s, s̃). There are now three cases:

– Suppose µ(i) = s̃(p). Then, the transition of C̃ labeled by the substitution
i 7→ p is:

τ̃σ:i 7→p =
∧
j∈p,x

ψ(p, j, a[p], a[j], a′[p], a′[j]).

Let s̃′ defined as s̃′(p)
def
= µ(i) and s̃′(a)[s̃′(p)]

def
= s′(a)[µ(i)]. Note that

S(s′, s̃′) by definition. Since (3) is universal and µ(i) = s̃(p), with an ar-
gument similar to Lemma 1, we have that s̃ ∪ s̃′ |= τ̃σ:i 7→p.

– Suppose µ(i) 6= s̃(p) but µ(i) = s̃(x) and s̃(a)[s̃(x)] = s(a)[µ(i)]. Then,
consider the transition labeled by the substitution i 7→ x. Similarly to the
first case, we can define s̃′ to be the restriction of s′ over p and x, and we
have that s̃ ∪ s̃′ |= τ̃σ:i 7→x. Moreover, S(s′, s̃′) by definition.

– If instead µ(i) 6= s̃(x) or s̃(a)[s̃(x)] 6= s(a)[µ(i)], we can reduce to the previous

case with a stuttering transition. Let s̃′ defined as s̃ on p, but s̃′(x)
def
= µ(i)

and s̃′(a)[s̃(x)]
def
= s(a)[µ(i)]. Note that we also have (s, s̃′) ∈ S. Then s̃∪ s̃′ |=

τ̃S , and we have reduced to the previous case. So, there exists an s̃′′ such
that s̃′ ∪ s̃′′ |= τ̃σ:i 7→x and S(s′, s̃′′).
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In general, suppose p = (p1, . . . , pn). By hypothesis

s ∪ s′ |= ∃i∀j.ψ(i, j, a[i], a[j], a′[i], a′[j]).

Since the the length of x is the maximum length of the existentially quantified
index variables in the rules of C, we can assume without loss of generality that i =
(i1, . . . , im) and x = (x1, . . . , xm). By hypothesis there exists an interpretation
µ of i such that

s ∪ s′ |= ∀j.ψ(µ(i), j, a[µ(i)], a[j], a′[µ(i)], a′[j]).

Let’s also fix a state s̃ of C̃, such that S(s, s̃). There are again three cases; we
omits the details since they are a generalization of the previous ones.

– if µ(i) ⊆ s̃(p), then there exist p
j

= (pj1 , . . . , pjm) such that µ(i) = s̃(p
j
).

We can define s̃′ to be the restriction of s over p and we have again s̃∪ s̃′ |=
τ̃σ:i7→p

j
.

– Suppose now there exists an 0 ≤ h < m such that µ(i1, . . . , ih) = s̃(pj1 , . . . , pjh),
and moreover µ(ih+1, . . . , im) = s̃(x1, . . . , xm−h), and also s̃(a)[s̃(x1, . . . , xm−h)] =
s(a)[µ(ih+1, . . . , im)]. Then, if we define s̃′ to be the restriction of s′ over p∪x,
we have that s̃ ∪ s̃′ |= τ̃σ where σ : i 7→ {pj1 , . . . , pjh , x1, . . . , xm−h}.

– If instead µ(ih+1, . . . , im) 6= s̃(x1, . . . , xm−h) or s̃(a)[s̃(x1, . . . , xm−h)] 6=
s(a)[µ(ih+1, . . . , im−h)], we can reduce to the previous case with a stuttering

transition. Let s̃′ defined as s̃ on p, but s̃′(x1, . . . , xm−h)
def
= µ(ih+1, . . . , im)

and s̃′(a)[s̃(x1, . . . , xm−h)]
def
= s(a)[µ(ih+1, . . . , im−h)]. Note that S(s, s̃′) by

definition. Moreover, s̃∪ s̃′ |= τS . We have now reduced to the previous case,
and the claim follows.

ut

Theorem 6. The relation S is a stuttering simulation between C and C̃.

Proof. Follows directly from Lemmas 1 and 2. ut

Theorem 7. Let C be an array-based transition system, C̃ its parameter ab-
straction defined in §5. Let ∀i.Φ(i, a[i]) a candidate invariant, and p a set of

frozen variables with same length as i. If C̃ |= Φ(p, a[p]), then C |= Φ(p, a[p])

Proof. The statement immediately follows from the fact that stutter simulations
preserve reachability, and from Proposition 5. ut
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A.2 Detailed Experimental Results

We report here detailed results of our experimental evaluation. The results for
each group of benchmarks are presented in Tables 2–4. Besides the execution
time, the table reports also some statistics on the size of the benchmarks (in
number of state variables V and transition rules T) and on the execution of
Lambda (number of iterations of the main loop I, number of lemmas added L
and removed R, and maximum size of the concrete instances explored C).

Table 2. Experimental results on Protocols benchmarks.

Size Lambda Cubicle MCMT
Benchmark Status V T I L R C Time Time Time
bakery safe 1 2 1 3 0 2 0.15 0.03 1.03
bakery lamport safe 4 4 1 45 0 2 2.06 0.08 1.03
bakery lamport nomax safe 4 4 1 44 0 2 2.07 UNK TO
berkeley safe 1 3 3 6 2 3 0.36 0.03 1.02
chandra buggy unsafe 16 27 0 0 0 2 1.54 0.81 3.08
chandra suggested inv 01 safe 16 27 1 3 0 2 1.93 0.04 1.03
chandra suggested inv 02 safe 16 27 1 1 0 2 0.92 0.03 1.03
chandra suggested inv 03 safe 16 27 1 6 0 2 1.69 8.12 92.29
chandra suggested inv 04 safe 16 27 1 6 0 2 9.87 18.58 TO
chandra suggested inv 05 safe 16 27 1 7 0 2 2.87 31.25 TO
chandra suggested inv 06 safe 16 27 6 25 4 4 29.43 0.05 TO
chandra suggested inv 07 safe 16 27 1 3 0 2 1.03 TO 15.38
chandra u cnj 01 safe 16 27 1 19 0 3 12.95 0.4 TO
chandra u cnj 02 safe 16 27 – – – – TO 90.6 TO
chandra u cnj 03 safe 16 27 1 3 0 2 1.83 0.04 TO
chandra u cnj 04 safe 16 27 – – – – TO TO TO
chandra unsafe 01 unsafe 16 27 2 2 1 4 7.41 0.23 1.03
dijkstra safe 3 7 1 5 0 2 0.34 0.05 1.03
flash eager safe 3 5 1 1 0 2 0.17 0.02 1.03
flash u cnj 00 safe 41 92 1 81 0 2 61.85 4.49 TO
flash u cnj 01 safe 41 92 3 100 1 2 37.02 MO TO
flash u cnj 02 safe 41 92 – – – – TO MO TO
flash u cnj 03 safe 41 92 – – – – TO MO TO
flash u cnj 04 safe 41 92 – – – – TO MO TO
flash u cnj 05 safe 41 92 8 269 5 3 1720.96 MO TO
flash u cnj 06 safe 41 92 – – – – TO MO TO
flash u cnj 07 safe 41 92 – – – – TO MO TO
flash u cnj 08 safe 41 92 – – – – TO MO TO
german baukus safe 9 11 2 65 1 3 5.15 0.09 1463.21
german pfs safe 10 13 7 186 11 3 25.97 0.11 521.72
german undip safe 9 15 4 51 5 3 4.5 0.06 1.03
illinois safe 1 9 2 28 0 3 0.86 0.03 1.03
jml safe 4 8 6 49 4 3 2.25 0.03 1.02
mesi safe 1 3 1 5 0 2 0.19 0.03 1.03
moesi safe 1 4 1 3 0 2 0.17 0.03 1.03
mutex safe 3 2 1 4 0 2 0.16 0.02 1.03
synapse safe 1 3 3 4 2 3 0.35 0.03 1.03
szymanski at safe 4 8 1 59 0 2 2.19 0.04 388.72
ticket safe 4 2 1 9 0 2 0.19 0.03 1.03
ticket buggy unsafe 4 2 0 0 0 2 0.13 0.03 1.03
ticket o param safe 6 5 20 794 16 5 403.01 UNK TO
xerox safe 4 20 1 10 0 2 0.51 0.03 1.03
TOTAL 42 34 30 24

V: num state vars; T: num transition rules; I: iterations;
L: num lemmas added; R: num lemmas removed; C: max concretization size;
TO: time out (> 1h); MO: memory out (> 4Gb); UNK: unknown result.
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Table 3. Experimental results on DynArch benchmarks.

Size Lambda MCMT
Benchmark Status V T I L R C Time Time
converging safe 1 a0 b0-src a0-dst b0 safe 6 9 1 1 0 1 0.19 1.02
converging safe 2 a1 b0-src a1-dst b0 safe 10 17 1 2 0 1 0.34 1.02
converging safe 3 a1 b0-src a1-dst b0 safe 14 25 1 3 0 1 0.52 1.02
converging safe 4 a2 b0-src a2-dst b0 safe 18 33 1 4 0 1 0.73 1.02
converging safe 5 a2 b0-src a2-dst b0 safe 22 41 1 5 0 1 1.07 1.02
converging safe 6 a3 b0-src a3-dst b0 safe 26 49 1 6 0 1 1.39 4.09
converging unsafe 1 a0 b0-src a0-dst b0 unsafe 6 13 0 0 0 1 0.13 1.03
converging unsafe 2 a1 b0-src a1-dst b0 unsafe 10 25 0 0 0 1 0.2 1.02
converging unsafe 3 a1 b0-src a1-dst b0 unsafe 14 37 0 0 0 1 0.3 1.02
converging unsafe 4 a2 b0-src a2-dst b0 unsafe 18 49 0 0 0 1 0.41 1.02
converging unsafe 5 a2 b0-src a2-dst b0 unsafe 22 61 0 0 0 1 0.53 1.02
converging unsafe 6 a3 b0-src a3-dst b0 unsafe 26 73 0 0 0 1 0.66 2.05
messenger safe 1 a0 a1-src a0-dst a1 safe 10 13 3 11 2 2 0.51 2.05
messenger safe 2 a0 a2-src a0-dst a2 safe 18 25 2 11 1 2 0.84 2361.91
messenger safe 3 a0 a3-src a0-dst a3 safe 26 37 2 12 1 2 1.46 TO
messenger safe 4 a0 a4-src a0-dst a4 safe 34 49 2 14 1 2 2.47 TO
messenger unsafe 1 a0 a1-src a0-dst a1 unsafe 8 13 0 0 0 1 0.15 1.03
messenger unsafe 2 a0 a2-src a0-dst a2 unsafe 14 25 0 0 0 1 0.43 14.35
messenger unsafe 3 a0 a3-src a0-dst a3 unsafe 20 37 0 0 0 1 1.25 1352.5
messenger unsafe 4 a0 a4-src a0-dst a4 unsafe 26 49 0 0 0 1 4.25 TO
messenger unsafe 5 a0 a5-src a0-dst a5 unsafe 32 61 0 0 0 1 8.18 TO
network safe 1 d e-src d-dst e safe 10 20 6 31 7 3 4.44 1.02
network safe 2 d e-src d-dst e safe 13 28 4 42 4 3 4.87 10.27
network safe 3 d e-src d-dst e safe 16 36 5 45 6 3 10.19 53.29
network safe 4 d e-src d-dst e safe 19 44 4 45 3 2 7.47 310.28
network safe 5 d e-src d-dst e safe 22 52 5 47 6 3 17.81 1675.7
network safe 6 d e-src d-dst e safe 25 60 7 53 7 3 31.52 TO
network unsafe 1 d e-src d-dst e unsafe 9 19 0 0 0 1 0.16 1.02
network unsafe 2 d e-src d-dst e unsafe 12 27 0 0 0 1 0.26 1.02
network unsafe 3 d e-src d-dst e unsafe 15 35 0 0 0 1 0.36 4.09
network unsafe 4 d e-src d-dst e unsafe 18 43 0 0 0 1 0.48 20.47
network unsafe 5 d e-src d-dst e unsafe 21 51 0 0 0 1 0.6 84.07
network unsafe 6 d e-src d-dst e unsafe 24 59 0 0 0 1 0.78 309.26
ring safe 1 s d-src s-dst d safe 4 7 1 2 0 1 0.13 1.02
ring safe 2 s d-src s-dst d safe 6 13 3 11 1 2 0.6 1.02
ring safe 3 s d-src s-dst d safe 8 19 17 36 19 4 18.84 1.02
ring safe 4 s d-src s-dst d safe 10 25 76 157 114 5 631.81 3.08
ring safe 5 s d-src s-dst d safe 12 31 – – – – MO 49.16
ring safe 6 s d-src s-dst d safe 14 37 – – – – TO MO
ring unsafe 1 s d-src s-dst d unsafe 4 7 2 2 1 2 0.27 1.02
ring unsafe 2 s d-src s-dst d unsafe 6 13 6 11 4 3 2.27 1.03
ring unsafe 3 s d-src s-dst d unsafe 8 19 25 39 33 4 52.07 4.1
ring unsafe 4 s d-src s-dst d unsafe 10 25 103 225 158 5 2285.03 215.17
ring unsafe 5 s d-src s-dst d unsafe 12 31 – – – – MO MO
ring unsafe 6 s d-src s-dst d unsafe 14 37 – – – – TO MO
sequence safe 1 s d-src s-dst d safe 4 5 1 2 0 1 0.11 1.03
sequence safe 2 s d-src s-dst d safe 6 11 11 21 8 4 4.11 1.03
sequence safe 3 s d-src s-dst d safe 8 17 – – – – TO 1.02
sequence safe 4 s d-src s-dst d safe 10 23 – – – – MO 3.07
sequence safe 5 s d-src s-dst d safe 12 29 – – – – MO 44.07
sequence safe 6 s d-src s-dst d safe 14 35 – – – – TO MO
sequence unsafe 1 s d-src s-dst d unsafe 4 5 0 0 0 1 0.08 1.03
sequence unsafe 2 s d-src s-dst d unsafe 6 11 2 2 1 2 0.35 1.02
sequence unsafe 3 s d-src s-dst d unsafe 8 17 5 7 4 3 2.49 1.03
sequence unsafe 4 s d-src s-dst d unsafe 10 23 11 20 15 4 13.95 1.02
sequence unsafe 5 s d-src s-dst d unsafe 12 29 28 61 52 5 234.49 5.12
sequence unsafe 6 s d-src s-dst d unsafe 14 35 – – – – TO 104.44
TOTAL 57 48 48

V: num state vars; T: num transition rules; I: iterations;
L: num lemmas added; R: num lemmas removed; C: max concretization size;
TO: time out (> 1h); MO: memory out (> 4Gb); UNK: unknown result.
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Table 4. Experimental results on Trains benchmarks.

Size Lambda
Benchmark Status V T I L R C Time
trains-switches-sorted-real 0 safe 6 5 1 4 0 3 0.51
trains-switches-sorted-real 1 safe 6 5 1 1 0 1 0.16
trains-switches-sorted-real 2 unsafe 6 5 0 0 0 3 0.43
trains-switches-sorted-real 3 safe 6 5 1 1 0 1 0.17
trains-switches-sorted-real 4 safe 6 5 1 1 0 1 0.16
trains-switches-sorted-real 5 safe 6 5 1 1 0 1 0.17
trains-switches-sorted-real 6 safe 6 5 1 1 0 1 0.17
trains-switches-sorted-real 7 unsafe 6 5 0 0 0 4 1.64
trains-switches-sorted-real 8 unsafe 6 5 0 0 0 8 12.31
trains-switches-sorted-real 9 safe 6 5 1 2 0 4 0.79
trains-switches-sorted-real 10 safe 6 5 1 2 0 3 0.4
trains-switches-sorted-real 11 safe 6 5 1 2 0 3 0.41
trains-switches-sorted-real 12 safe 6 5 1 7 0 4 1.12
trains-switches-sorted-real 13 safe 6 5 1 6 0 3 0.52
trains-switches-sorted-real 14 safe 6 5 1 7 0 3 0.71
trains-switches-sorted-real 15 safe 6 5 1 1 0 2 0.24
trains-switches-sorted-real 16 safe 6 5 1 2 0 2 0.28
TOTAL 17 17

V: num state vars; T: num transition rules; I: iterations;
L: num lemmas added; R: num lemmas removed; C: max concretization size;
TO: time out (> 1h); MO: memory out (> 4Gb); UNK: unknown result.
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