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Abstract. Rarely verification problems originate from bit-level descriptions. Yet,
most of the verification technologies are based onbit blasting, i.e., reduction to
boolean reasoning.
In this paper we advocate reasoning at higher level of abstraction, within the the-
ory of bit vectors (B V ), where structural information (e.g. equalities, arithmetic
functions) is not blasted into bits. Our approach relies on the lazy Satisfiability
Modulo Theories (SMT) paradigm. We developed a satisfiability procedure for
reasoning about bit vectors that carefully leverages on thepower of boolean SAT
solver to deal with components that are more naturally “boolean”, and activates
bit-vector reasoning whenever possible. The procedure hastwo distinguishing
features. First, it relies on the on-line integration of a SAT solver with an incre-
mental and backtrackable solver forB V that enables dynamical optimization of
the reasoning about bit vectors; for instance, this is an improvement over static
encoding methods which may generate smaller slices of bit-vector variables. Sec-
ond, the solver forB V is layered(i.e., it privileges cheaper forms of reasoning),
and it is based on a flexible use of term rewriting techniques.
We evaluate our approach on a set of realistic industrial benchmarks, and demon-
strate substantial improvements with respect to state-of-the-art boolean satisfia-
bility solvers, as well as other decision procedures for SMT(B V ).

1 Introduction

Historically, algorithmic verification has been based on efficient reasoning engines,
such as Binary Decision Diagrams [7], and more recently on SAT procedures [15],
reasoning at theboolean level. However, the source of verification problems has in-
creasingly moved from the boolean level to higher levels: most designers work at least
at Register Transfer Level (or even higher levels). Thus, the mapping to verification
engines is typically based on some form of synthesis to the boolean level. With this
process, hereafter referred to asbit blasting, boolean representations are generated for
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structured constructs (e.g., arithmetic operators), and even simple assignments result in
fairly large formulae (e.g., conjunctions of equivalencesbetween the bits in the words).

This impacts verification in several ways. For instance, high-level structural infor-
mation is not readily available for a solver to exploit (and arithmetic is typically not
handled efficiently by boolean reasoners). Furthermore, the hardness of the verification
exhibits a dependence of the width of the data path.

The importance of avoiding (or controlling) the use of bit blasting has been strongly
advocated by [18], where the theory of bit vectors is identified as a suitable represen-
tation formalism for practical industrial problems from many application domains, and
the development of effective solvers for SMT(B V ) is highlighted as an important goal
for the research community.

In this paper we take on this challenge and propose a new, scalable approach to
SMT(B V ) based on thelazy SMT paradigm. We have developed a satisfiability pro-
cedure for reasoning in the theory of bit vectors, that leverages the power of boolean
SAT solver to deal with components that are more naturally “boolean”, and activates
reasoning on bit vectors whenever possible.

The procedure has two distinguishing features. First, it isbased on thelazy SMT
paradigm, that is, it relies on theon-line integration of a SAT solver with anincre-
mental and backtrackablesolver forB V (B V -solver), that allows us to dynamically
optimize the reasoning about bit vectors. For instance, this has the advantage that word
chunks are kept as large as possible, since the splitting is carried out according to the
control path currently activated; this addresses one of thedrawbacks of static encoding
methods [4, 2], which may result in an unnecessary slicing ofbit vector variables.

Second, theB V -solver makes aggressive use oflayering, i.e., subsolvers for cheaper
theories are invoked first, and more expensive ones are called only when required, and
on simplified subproblems. The cheapest levels are implemented by means of flexible
use ofterm rewritingtechiques.

Our approach also relies on a preprocessor, aiming at simplifying the problem be-
fore the search, and on a novel boolean enumeration algorithm for circuits that generates
partial satisfying assignments.

We evaluate our approach experimentally on a set of realistic industrial benchmarks.
We analyze the impact of the proposed optimizations, showing that they all contribute to
gaining efficiency. We then compare our solver with several state of the art approaches,
including MiniSat 2.0, the winners of the last SMT competition on bit vectors, and
BAT [13]. The results indicate that our approach, despite the preliminary status of the
implementation, has a great potential: on the hardest instances it is often able to largely
outperform the other approaches.

This paper is structured as follows. In §2 we describe the problem of Satisfiability
Modulo the theory of bit vectors, and in §3 we describe the previous approaches. In §4
we overview our approach. In §5 we discuss the details of the preprocessing, and in §6
we present theB V -solver. In §7 we experimentally evaluate our approach. Finally, in
§8 we draw some conclusions and outline directions for future research.



2 SMT(B V ): Satisfiability Modulo the Theory of Bit Vectors

A bit vector of a given widthn is an array of bits and hence it may assume (decimal)
values in the range[0,2n−1], accordingly to the binary value expressed by its individual
bits. From now on we will implicitly assume bit vector variables to have a fixed width,
whose maximal valueN is determined a priori. In the remainder of the paper we shall
use the notationxn to represent a bit vector variable of widthn or simply x when the
width is not important or it can be deduced from the context. Constants will be denoted
either with their decimal or binary value (in the latter casea subscript “b” is added).

The easiest possible theory of bit vectors (here denoted asB V (ε)) includes only bit
vector variables, constants, and the equality (=) as predicate symbol. Notice that, since
we are dealing with fixed-width bit vectors , any interpretation of the theory must satisfy
implicit finite domain constraints; for instance it is not possible to satisfy formulae of
the kind

V2n+1
i=1

V2n+1
j=i+1xi

n 6= xj
n, because only 2n different values may be represented

with n bits.
More interesting theories may be obtained with the additionof other operators to

B V (ε). The most common ones can be divided into three main sets:

core operators {[i : j], ::}, named selection (or extraction) and concatenation respec-
tively; i is the most significant bit in the selection (i ≥ j ). The result of a selection
is a bit vector of sizei − j +1 whosek-th bit is equivalent to thek+ j-th bit of the
selected term, fork∈ [0, i− j +1]. Concatenation returns a bit vector resulting from
the justapposition of the bits of its arguments;

arithmetic operators (and relations){+,−,∗,<}, i.e., plus, minus, multiplication by
constant, and less than. The intended semantic is the one of arithmetic modulo 2n,
n being the width of the arguments of the operators;

bitwise operators { AND , OR , NOT } that apply basic logical functions to corre-
spondent bits of the arguments.

In [9] it is shown a polynomial algorithm to solveB V (ε) augmented with core
operators (B V (C)). As soon as other operators are added to the theory, either arithmetic
(B V (CA)) or bitwise (B V (CB)) or both (B V (CAB) orB V ), the problem of deciding
a conjunction of atoms becomes NP-Hard [3]. In the following, a bit vectorterm is
defined to be either a constant, a variable, or the application of an operator to a term. A
bit vectoratomis an application of a relation (=, <) to two terms.

Given a decidable first-order theoryT , we call thedecision problemonT (DEC(T ))
the problem of deciding the satisfiability inT of sets/conjunctions of ground atomic for-
mulas (T -atoms) and their negations in the language ofT . We call aT -solverany tool
able to decide DEC(T ). Satisfiability Modulo (the) TheoryT (SMT(T )) is the prob-
lem of deciding the satisfiability ofboolean combinationsof propositional atoms and
theory atoms. (Consequently, DEC(B V ) and SMT(B V ) represent respectively the de-
cision and the SMT problem inB V .) We call anSMT(T ) solverany tool able to decide
SMT(T ). Notice that, unlike with DEC(T ), SMT(T ) involves handling also boolean
connectives.



3 An Analysis of Previous Approaches

In this section we overview and analyze the main approaches for the verification of an
RTL circuit design.

Eager encoding into SAT (bit blasting).The traditional approach (bit blasting) is that
of encoding the problem into a boolean formula, which is thenfed to a boolean solver:
words are encoded into arrays of boolean atoms, andB V operators are decomposed
into their gate-level representation, each gate being a boolean connective. Pre- and
post-processing steps can further enhance the performance(see, e.g., [11, 13, 12, 10]).
Notice that the winners of SMT-COMP’06 for SMT(B V ) were all based on bit blasting.

A variant of this approach is followed in [17, 2]: abstract representations of an RTL
circuit are generated by abstracting away information on the data path, and the resulting
encoding is then fed into a propositional SAT solver. The approach in [2] is subject to
loss of information, and iterative refinement may be required.

Eager encodings into DEC(B V ). The approaches proposed in [9, 14, 3] encode the
problem into a set of atomic formulas in (fragments of)B V , which is fed to aB V -
solver. Novel and optimizedB V -solvers have been introduced there: particular atten-
tion is paid in optimizing the partitioning of bit vectors due to core operators [14] and
in handling modulo-arithmetic operators [3].

Eager encodings into DEC(L A (Z)). The approaches proposed in [19, 6] encode the
problem into a set of literals in the theory of linear arithmetic on the integers (L A (Z))
which is then fed to aL A (Z)-solver: bit-vector variablesxi

n are encoded as integer
variablesxi ∈ [0,2n−1], RTL constructs [19]) are encoded, intoL A (Z) constraints.

Eager encoding into SMT(L A (Z)). The approach we proposed in [4] encodes the
problem into an SMT(L A (Z)) formula, which is fed to an SMT(L A (Z))-solver. The
design is partitioned intocontrol-pathanddata-pathcomponents: control lines are en-
coded as boolean atoms, and control constructs into booleancombinations of control
variables and predicates over data-path variables; data-path bit-vector variables and lin-
earizable data-path constructs are encoded similarly to the DEC(L A (Z)) approach;
non-linearizable data-path constructs are encoded by bit-blasting, or by means of un-
interpreted functions. Some other constraints are introduced to represent the interface
between the control and data-path lines.

Generalizing a standard terminology of the SMT community, we call the approaches
above,eager approaches, because the encodings into SAT, DEC(B V ), DEC(L A (Z))
and SMT(L A (Z)) respectively are performed eagerly at the beginning of the process,
before starting any form of search.

We now discuss the above approaches. The key issue of the approaches based on
bit-blasting is that they encode bits into booleanatoms, and consequently words into
arrays of boolean atoms and gates intoboolean connectives. On the one hand, this al-
lows for a straightforward encoding of all constructs of theB V language; moreover,
as all the search is demanded to an external SAT solver, it allows for selecting the SAT
solver off-the-shelf; more importantly, these approachesallows for exploiting the full
power of modern boolean solvers in handling the search due tothe control logic. On
the other hand, a predominant part of the computational effort is wasted in performing



useless boolean search on the bitwise encoding of data-pathvariables and arithmetical
operations (e.g., up to a 232 factor in the amount of boolean search for a 32-bit inte-
ger value). In particular, notice that boolean solvers are typically “bad at mathematics”,
in the sense that reasoning on the boolean encoding of arithmetical operations causes
a blowup of the computational effort. To this extent, we say that the bit-blasting ap-
proaches are “control-path oriented”, in the sense that they are well-suited for problems
where the control-path component dominates, but may sufferwhen the data-path com-
ponent dominates, in particular when lots of arithmetic is involved.

The key issue of the encoding-into-DEC(T ) approaches is that they encode words
into terms in some first order theoryT (typically some fragment of eitherB V or
L A (Z)), and consequently gates and RTL operators intofunction symbolsof T . On
the one hand, these approaches allows and ad-hocT -solver for handling each word as
a single term inT , preventing the bit-blasting of the world itself and the consequent
potential blowup in boolean search; moreover, arithmetic operators can be handled di-
rectly and efficiently by an ad-hoc solver. On the other hand,the fact that control bits and
gates are encoded into terms and function symbols respectively prevents from exploit-
ing the full power of modern boolean solvers in handling the search due to the control
logic. To this extent, we say that the encoding-into-DEC(T ) approaches are “data-
path oriented”, in the sense that they are well-suited for problems where the data-path
part dominates, in particular when lots of arithmetic is involved, but may suffer when
the control-path part dominates.

The key issue of the encoding-into-SMT(L A (Z)) approach is that control bits and
gates are encoded into boolean atoms and connectives respectively, whilst words and
RTL operators are encoded into terms, function and predicate symbols inL A (Z) re-
spectively. Remarkably, some bits may have both a control-path and a data-path role,
and have a double encoding. On the one hand, this approach allows for exploiting the
power of the boolean solver embedded in the SMT(L A (Z)) solver in handling the
search due to the control logic, preventing the blowup in boolean search due to the
bit-blasting of data-path words.

On the other hand, it suffers from other important weaknesses: first, some con-
structs (e.g., bitwise operators) cannot be encoded intoL A (Z), and must bit-blasted
anyway; second, theL A (Z) constraints resulting from the encoding of coreB V op-
erations, like selection and concatenation, turns out to bevery expensive to handle by
L A (Z)-solvers; third, manyL A (Z) constraints resulting from the encoding of some
B V constructs prevent and efficient propagation of integer values and boolean values,
corresponding to unit-propagation in the equivalent bit-blasted encoding. (These prob-
lems are shared also by the encoding-to-DEC(L A (Z)) approach.) Overall, from our
experience the approach turned out to be less efficient than expected, mostly due to too
many and too expensive calls toL A (Z)-solvers.

We see our encoding-into-SMT(L A (Z)) approach of [4] as a first and very prelimi-
nary attempt to merge control-path-oriented and data-path-oriented approaches. In next
sections we push this idea forward, within the lazy SMT(B V ) framework.



4 A lazy approach to SMT(B V )

Our novel SMT(B V ) solver is based on the layered lazy approach to SMT(T ) (see,
e.g., [5]). A preprocessortakes as input a representation of (the negation of) an RTL
verification problem, and produces a simpler and equivalently-satisfiable SMT(B V )
CNF formulaϕ. The search is based on theboolean abstractionof ϕ, that is a boolean
formulaϕp obtained by substituting every distinctB V -atom inϕ with a fresh propo-
sitional atom.ϕ is also called therefinementof ϕp. The boolean abstractionϕp of ϕ
is then fed to amodified DPLL engine, which enumerates a complete listµp

1, ...,µp
n of

partial truth assignments which satisfyϕp. Every time a new assignmentµp
i is gener-

ated, the setµi of B V literals corresponding toµp
i is fed to aB V -solver. If µ is found

B V -consistent, thenϕ is B V -consistent and the whole procedure stops. Otherwise, the
B V -solver returns the subsetη ⊆ µ which caused the inconsistency ofµ (called athe-
ory conflict set). The boolean abstractionηp of η is then used by the DPLL engine to
prune the future boolean search (by backjumping and learning [15]). If at the end of the
boolean search none of theµi ’s is foundB V -consistent, thenϕ is B V -inconsistent and
the whole procedure stops.

In order to increase the efficiency of theB V reasoning, theB V -solver is organized
into threelayersof increasing expressivity and complexity, s.t. the more expensive lay-
ers come into play only when strictly needed [5]. In particular, the DPLL engine invokes
theB V -solver also on assignments under construction (“early pruning”), which can be
pruned if they are found unsatisfiable inB V . As these checks are not necessary for the
correctness and completeness of the procedure, in early-pruning calls only the cheaper
layers of theB V -solver are invoked. (We omit the description of other SMT optimiza-
tions we adopted, which can be found in [5].)
The preprocessor and theB V -Solver are described in details in §5 and §6 respectively.

Notice that, unlike the eager approaches described in §3, our approach islazy, in the
sense that the encoding is performed by theB V -solver,on demandandad hocfor every
branch in the search. Thus, only a strict subset of theB V atoms are assigned by DPLL
and passed to theB V -solver, corresponding to only the sub-circuits that are given an ac-
tive role by the control variables assigned in the branch. This reduces the computational
effort required to theB V -solver, in particular when expensive arithmetical constructs
come into play, and addresses one of the major source of inefficiency we encountered
with the SMT(L A (Z)) approach [4]. Another advantage is that bit-vector chunks are
kept as large as possible, since the splitting is carried outaccording to the control path
currently activated; this addresses one of the drawbacks ofeager encoding methods [14,
2, 4], which may result in an unnecessary slicing of bit-vector variables.

5 Preprocessing

The schema of the preprocessor is outlined in the left part ofFigure 1. It consists mainly
on a sequence of six processing steps.

1. Bool to word-1 encoding. The first step addresses the fact that in an RTL circuit
there is not always a clear separation between thedata pathsand thecontrol paths;
in particular, there is no distinction between control lines and word variables of width
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Bit−mask Elimination Selection Propagation
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Frontier propagation
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Formula Normalizer

Fig. 1. The architecture of the preprocessor and of the second layerof the solver.

one. This distinction is crucial when our SMT approach is used, because the former and
the latter ones must be encoded respectively as propositional atomsand astermsin the
theory [4].

The encoder tags all the nodes of the circuit either asbool (“control”) or asword
(“data”): outputs from predicates (=, < ) and words of width one are taggedbool; the
result of concatenations or arithmetic operators is instead tagged asword. The tagging
information is then propagated back and forth to the remaining parts of the circuit.
(Bitwise operators withbool inputs are converted into boolean operators.) When tag
clashes occurs (e.g., a node taggedbool is in input to a concatenation), they are resolved
with the introduction of a one of twotag-casting operators: word1( b ) translates a
bool b into aword of size 1, andbool( w1 ), which casts aword w1 into abool. The
former is expanded intow1∧ (b→ w1 = 11)∧ (¬b→ w1 = 01), the latter intow1 = 11.

2. Control-paths extraction. Whenword1(.) constructs occur in matching positions
in an equality, then the equality is split into a conjunctionof equalities, and the equali-
ties between word1 variables are transformed into equivalences between booleans. For
instance,(t1

7 :: word1(p) :: t2
8) = (t3

7 :: word1(q) :: t4
8) is rewritten into the equiva-

lent form(t1
7 = t3

7)∧ (p↔ q)∧ (t2
8 = t4

8).

3. Propagation of unconstrained variables.Industrial benchmarks often contain un-
constrained variables (i.e., input variables that occur only once in the formula) used
to abstract more complex subparts. An unconstrained variable may assume an arbitrary
value, and hence we can rewrite the original formulaφ into anequisatisfiableformulaφ′
using the following rules (v, v1, andv2 are unconstrained variables,f is a fresh variable,
p is a fresh propositional variable):

vn + tn → fn

tn +vn → fn

vn− tn → fn

tn−vn → fn

v1
n :: v2

m → fn+m

NOT vn → fn

v1
n AND v2

n → fn

v1
n OR v2

n → fn

vn = tn → p
vn

< tn
,t 6≡ 0n → p

tn < vn,t 6≡ 2n −1n → p



4. Frontier Propagation and Variable Inlining. When a boolean formulaφ is as-
serted to a truth value, the truth value information may be propagated backward to its
subformulae. For instance, ifφ is a conjunction andφ is asserted to true, also its con-
juncts must be true. During this process of frontier propagation it is possible to collect
every equality between aword variable and a constant that has been marked as true
and replace every occurrence of the variable with the constant. The whole process is re-
peated until a fixpoint is reached. (Typically a couple of iterations are enough to reach
convergence.)

5. Enhanced Term-ITE expansion. Term-ITE constructs (ITEt ) are not part of the
language of SMT(B V ), and hence they have to be expanded. The naive approach is to
introduce a fresh variable for every occurrence of a Term-ITE, and then add two im-
plications to the original formula. For instance,t1

n = ITEt(q, t2
n, t3

n) is rewritten into
t1

n = fn∧ (q → fn = t2
n)∧ (¬q → fn = t3

n). When a formula contains a considerable
amount of Term-ITEs, the generation of a corresponding number of fresh variables neg-
atively affects performance. In many applications, however, Term-ITE constructs are or-
ganized in complex clusters with the structure of a directedacyclic graph. Any maximal
cluster in the formula can be transfomed into a correspondent Boolean-ITE (ITEb) clus-
ter by pushing the external predicate toward the leaves of the DAG. For instance,t1

n =
ITEt(q1, ITEt(q2, t2

n
, t3

n), t4
n) can be rewritten into ITEb(q1, ITEb(q2, t1

n = t2
n
, t1

n =
t3

n), t1
n = t4

n) saving the introduction of two fresh variables.

6. Normalization. In the language ofB V the problem of transforming a generic bit
vector expression into a canonical form is an NP-Hard problem in itself. Weaker, but
effective, polynomial transformations on bit vector termsare performed, for instance
elimination of concatenation with perfect match:t1

m :: t2
n = t3

m :: t4
n is reduced to the

conjunction oft1
m = t3

m andt2
n = t4

n.

During the whole six-step process above, a set of cheap and “local” linear transfor-
mations are applied in order to simplifyB V terms.
Evaluation of Ground terms. Whenever a term is composed solely of constants it is
replaced by the constant of the appropriate value; similarly for boolean formulas. For
example, 0100b :: 0001b+00001001b is evaluated into 01001010b.

Bit-masks elimination. When a constant occurs in a binary bitwise operation, it is
rewritten into concatenations of maximal sequences of 0’s and 1’s. For example, the
constant 00011101b is split as 000b :: 111b :: 0b :: 1b. Then, similar splitting is applied
to the other term, and then the operator is evaluated. For instance,t8 AND 00011101b
is rewritten into 000b :: t [4 : 2] :: 0b :: t [0 : 0].

Selection propagation.Selection operators are propagated through concatenationand
bitwise operators. After this process, only selection on variables, ITE’s or arithmetic
operators can be left.

These transformations are implemented within the “term bank”, a layer that allows
for the dynamic creation of new terms, implementing perfectsharing; both the prepro-
cessor and the solver, described in next section, rely on theterm bank, and benefit from
the transformations above.



6 An Incremental and LayeredB V -Solver for SMT(B V )

In this section we describe theB V -solver, that decides the consistency of a set of bit
vector literals, and in case of inconsistency, it produces aconflict set. TheB V -solver is
intended to be called on-line, while the boolean search is constructing a boolean model,
in order to apply early pruning. For this reason, it is implemented to beincrementaland
backtrackable, i.e., it is possible to add and remove constraints without restarting from
scratch.

The theory solver islayered[5], i.e. it analyzes the problem at hand trying to detect
inconsistency in layers of theories of increasing power, sothat cheaper layers are called
first. Thefirst layer is a solver for the logic of Equality of Uninterpreted Functions
(E U F ). Here all bit vector operators (functions and predicates)are treated as unin-
terpreted, the finiteness of the domain and codomain of variables and functions is not
taken into account; all constants are however treated as distinct. TheE U F solver [16]
is incremental, backtrackable, produces conflict sets, andhas the capability to deduce
unassigned theory literals, which will be propagated to theboolean enumerator. In this
layer, conflicts of the typex < y::z, ¬(x < w), w = y::z can be detected.

Thesecond layeris an incomplete solver, based on a set of inference rules forbit-
vector constraints, that can be applied in an incremental and backtrackable manner. The
main idea driving the design of this solver is that a completesolver is very seldom nec-
essary. Thus, a solver based on a small number of inference rules, that can be efficiently
implemented, may suffice to decide most formulas.

The third layer is a complete solver for conjunctions of bit vector constraints, that
ultimately relies on the encoding intoL A (Z) proposed in [6]. In early pruning, the
first two, cheaper layers are active; the third, more expensive layer is activated only
in complete calls, when a definite answer is necessary, i.e. when a satisfying boolean
assignment is being analyzed.

In the rest of this section, we focus on the second layer, which is the most novel
component of the solver. The architecture of the second layer is depicted in the right
part of Figure 1. The control is organized into a sequence of four main stages, described
below. Each of the stages transforms a set of currently active facts, by means of a syn-
tactic inference engine, in an incremental and backtrackable manner.

Similarly to the preprocessor, the solver relies on the termbank, so that whenever
a new term is created, the local simplification rules described in §5 are automatically
applied. In addition, whenever a new literal is created, a set of normalization rules is
used to obtain simpler literals. The rules include a subset of the normalizations applied
in the preprocessor which are described in §5; in addition, negated equalities of the
form ¬(t1 = 11) are turned into the positive correspondentt1 = 01. Early termination
is enforced upon detection of inconsistency: whenever a literal is reduced to false, the
computation is immediately stopped. The stages are the following:

Concatenation Elimination (match). The rule for the elimination of concatenation
with perfect match (see Section 5) is applied to all the literals that are amenable for
reduction. We notice that the rule does not introduce any selection operator.

Variable Elimination. Whenever a fact of the formv = t is active, andv does not
occur in t , then it is removed from the active facts, and every occurrence of v in the
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Fig. 2.Comparison between different optimizations. Execution times measured as 0 seconds have
been adjusted to 0.01 seconds.

other active facts is replaced byt . During substitution, new terms may be generated in
the term bank, so that the corresponding local rules are applied, together with the literal
normalization rules.

Concatenation Elimination (no match).All top-level concatenations are simplified,
regardless of the match of the sizes. In particular, each active fact having the form
t1

m:: t2
n = t3

m+n is replaced byt1
m = t3[m+n : n] andt2

n = t3[n−1 : 0]. We notice that
at this stage concatenations may be replaced by selections,requiring thus the creation
of new terms, which in turn fire local rules and literal normalization rules.

Deduction Rules.The final step is the application of the following simplification rules,
until fix point is reached (here “c” denotes a constant).

t1 = t2 t2 = t3

t1 = t3
Tr1

t1 < t2 t2 < t3

t1 < t3
Tr2

c < t1 t1 < t2

c+1 < t2
Tr3

A ¬A
⊥

Exc.

Some remarks are in order. First, the issue of incrementality and backtrackability
poses nontrivial constraints on the implementation of the stages; in particular, variable
elimination is not applied destructively, and it is, in the current implementation, the
most expensive stage. It is likely that additional efficiency may be achieved by means
of optimizations of the underlying data structures. Second, new rules can be plugged
in with relatively little effort, possibly in a way that is dependent on the application
domain; additional efficiency could be achieved by scoring their activity on the fly,
with a mechanism similar to the VSIDS heuristic for SAT.

Finally, a very relevant issue is the generation of informative (i.e., small) conflict
sets. Currently, if an inconsistency is detected, the leaves of the proof tree can be taken
as a conflict set. However, the conflict sets generated may contain irrelevant literals,
depending on the order in which inference rules are applied.Currently, we start from
the assumptions of the proof and obtain a smaller conflict sets by means of deletion
filtering [8]: one constraint is dropped from the conflict set, and then consistency is
checked again. If the set is still inconsistent, the droppedconstraint was irrelevant. This
is repeated until a fix point is reached, and the remaining setof literals can be used as
a conflict set. A method based on proof storing and analysis could be used to improve
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Fig. 3. Scatter plots between MathSAT and the other solvers. Execution times measured as 0
seconds have been adjusted to 0.01 seconds.

the quality of the conflict set; however, an efficient implementation may be nontrivial
to achieve, and it is left as the object of future research.

7 Experimental Evaluation

The approach described in previous sections was implemented within the MathSAT
system, and was experimentally evaluated on industrial verification problems. In this
section we first describe the experimental set up, and reportthe evaluation in two parts.
First we show the impact of the different optimizations. Second, we compare our solver
against alternative approaches.

Experimental Set Up We evaluated our approach in a set of industrial benchmarks
provided by Intel. Unfortunately, we can not disclose the benchmarks or any details on
the original application domain.

For the benefit of the reader, in order to give a feeling of their structural properties
we report in a technical report available at [1] for each of the benchmarks the number
of: constants, words of size 1, words of size> 1, equalities, core operators, arithmetic
operators, bitwise operators, ITEs, boolean connectives.We also report the size of the
boolean abstraction of the SMT(B V ) encoding, and the size of the bitblasted formula.

The experiments were run on an Intel Xeon 3GHz processor running Linux. For
each run, the time limit was set to 1 hour and the memory limit was set to 1500 MB.

Evaluation of the Optimizations In this section we compare the impact of eq-layering
and enhanced ITE expansion on the overall performance of thesolver. We compare the
best configuration (the one with all optimizations enabled), against configurations that
have a single option disabled at a time, and against the baseline configuration, where no
optimization is active. Results are shown in figure 2. The results clearly show that each
of the optimizations contributes to improving the performance; we also see that without
them the solver is virtually unable to solve any of the interesting instances.
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Fig. 4. Cumulative distribution functions (survival plots) comparing the solvers in log scale. Ex-
ecution times measured as 0 seconds have been adjusted to 0.01 seconds.

Comparison with Other Solvers We compared our approach against the following
systems.

– MiniSat 2.0, considered as the best system based on bit blasting; We are using the
SatELite-like simplifying version as it performed better on these instances.

– STP, as one of the winners of the bit-vector division of the latest SMT-COMP com-
petition; STP extends bit blasting with a normalization/preprocessing step, built on
top of an incremental SAT engine. We are using a recent version provided by the
authors of STP.

– Yices 1.0.3, as the other winner of the latest SMT-COMP in thebit-vector division.
To the best of our knowledge, the solver for bit vector reasoning in Yices is based
on bit blasting [10].

– BAT 0.2 is a recently-released system that specializes in structured, modular prob-
lems with memories. It combines a clever encoding of memory term rewriting tech-
niques and reduction to SAT.

The problems were given in input to STP and Yices in SMT format. As for MiniSat,
we generated a DIMACS file both before and after the preprocessing, and we used the
one that resulted in better performance, i.e., the one before preprocessing; surprisingly,
our preprocessor degraded the performance of MiniSat significantly.

Scatter plots of the execution times can be seen in figure 3. Ascan be seen from the
figure, MathSAT clearly outperforms other solvers on the majority of instances. The
notable exception is BAT which is comparable on the two hardest, although slightly
slower (see Table 1 for the precise time taken).



Instance MathSAT STP Yices MiniSat BAT
Intel-35 3 3 72 50 >18000 >18000 42 19 81 80
Intel-37 4 3 84 68 >18000 >18000 47 17 80 80
Intel-39 4 4 133 189 >18000 >18000 35 38 28 28
Intel-76 256 76 >18000 >18000 >18000 >18000 1393 8658 344 348
Intel-77 29 22 2687 1781 >18000 >18000 948 559 245 248
Intel-78 580 252 8451 9699 >18000 >18000 2973 2199 611 611
Intel-79 62 36 >18000 9968 >18000 >18000 1929 8065 240 242

Table 1.Execution times for the hardest instances. All times are rounded to the nearest second.

From the cumulative distribution functions in figure 4 the percentiles can be read.
On the easiest instances Yices is fast, but there are 25 instances it cannot solve within
the time limit. MathSAT, on the other hand, is clearly superior approximately above the
60th percentile.

We now focus on the “hardest” instances, i.e. those instances where at least two
systems used an execution time greater than 60 seconds. In particular, we extended the
execution time limit to 5 hours. In addition, we experimented with two different trans-
lations from the source file format. (For each sample in figures 3 and 4 the translation
corresponding to the best performance for each solver has been used.) The results are
reported in Table 1: for each system, we report the result forboth encodings. We see
that MathSAT outperforms the other solvers, regardless of translation. We also notice
that the translation schema may induce substantial differences in performance, in par-
ticular for STP and MiniSat: with the second translation, STP solves one more instance
within the extended time limit, whereas MiniSat performs considerably worse on two
instances. Yices is not able to solve any of these benchmarkswithin the time with either
translation, while the performance of BAT is remarkably stable.

8 Conclusions and Future Work

The work described in this paper is motivated by the fact thatmany verification prob-
lems, especially in industrial settings, are naturally described at a level of abstraction
that is higher than boolean – the additional structure is typically used to describe data
paths.

We have developed a new decision procedure for Satisfiability Modulo the Theory
of fixed-width bit vectors. The procedure is tailored towards hard industrial problems,
and has two distinguishing features. First, it is lazy in that it invokes a solver on the
theory of bit vectorson the flyduring the search. Second, it is layered, i.e. it tries to ap-
ply incomplete but cheap forms of reasoning (e.g. equality and uninterpreted functions,
term rewriting), and deal with complete solvers only when required. As a result struc-
tural information is used to significantly speed up the search, without incurring in a sub-
stantial penalty with reasoning about purely boolean parts. In an empirical evaluation
performed on industrial problems, our solver outperforms state-of-the-art competitor
systems by an order of magnitude on many instances.



In the future, we plan to work on the following problems. First, the current im-
plementation can be heavily optimized; in particular the generation of conflict sets is
currently an issue. Second, we plan to investigate the application of advanced theorem
proving techniques. We would also like to experiment with abstraction refinement tech-
niques, and to integrate the solver within a CEGAR loop basedon the NuSMV model
checker.
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