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Abstract. Rarely verification problems originate from bit-level deéptions. Yet,
most of the verification technologies are basediirblasting i.e., reduction to
boolean reasoning.

In this paper we advocate reasoning at higher level of atifirg within the the-
ory of bit vectors §8 %), where structural information (e.g. equalities, arithime
functions) is not blasted into bits. Our approach reliestanldzy Satisfiability
Modulo Theories (SMT) paradigm. We developed a satisfighiliocedure for
reasoning about bit vectors that carefully leverages opteer of boolean SAT
solver to deal with components that are more naturally “bao?, and activates
bit-vector reasoning whenever possible. The procedureimaglistinguishing
features. First, it relies on the on-line integration of arMlver with an incre-
mental and backtrackable solver 8’ that enables dynamical optimization of
the reasoning about bit vectors; for instance, this is arrérgment over static
encoding methods which may generate smaller slices ofduitev variables. Sec-
ond, the solver foB 7 is layered(i.e., it privileges cheaper forms of reasoning),
and it is based on a flexible use of term rewriting techniques.

We evaluate our approach on a set of realistic industriat fw@arks, and demon-
strate substantial improvements with respect to stathefart boolean satisfia-
bility solvers, as well as other decision procedures for $®HP ).

1 Introduction

Historically, algorithmic verification has been based oficeint reasoning engines,
such as Binary Decision Diagrams [7], and more recently ofi $focedures [15],
reasoning at théoolean levelHowever, the source of verification problems has in-
creasingly moved from the boolean level to higher levelssindesigners work at least
at Register Transfer Level (or even higher levels). Thus,ttapping to verification
engines is typically based on some form of synthesis to tteelanm level. With this
process, hereafter referred tokasblasting boolean representations are generated for
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EU project S3MS “Security of Software and Services for Melslystem” contract n. 27004
for supporting part of his research.



structured constructs (e.g., arithmetic operators), &ad simple assignments result in
fairly large formulae (e.g., conjunctions of equivalenbetveen the bits in the words).

This impacts verification in several ways. For instancehHayel structural infor-
mation is not readily available for a solver to exploit (arrdhanetic is typically not
handled efficiently by boolean reasoners). Furthermossh#rdness of the verification
exhibits a dependence of the width of the data path.

The importance of avoiding (or controlling) the use of badting has been strongly
advocated by [18], where the theory of bit vectors is idegdifas a suitable represen-
tation formalism for practical industrial problems from myaapplication domains, and
the development of effective solvers for S ) is highlighted as an important goal
for the research community.

In this paper we take on this challenge and propose a nevaldeahpproach to
SMT(3 ) based on théazy SMT paradigm. We have developed a satisfiability pro-
cedure for reasoning in the theory of bit vectors, that lages the power of boolean
SAT solver to deal with components that are more naturalyotean”, and activates
reasoning on bit vectors whenever possible.

The procedure has two distinguishing features. First, litaised on théazy SMT
paradigm, that is, it relies on then-line integration of a SAT solver with amcre-
mental and backtrackableolver fors v (84 -solver), that allows us to dynamically
optimize the reasoning about bit vectors. For instance hths the advantage that word
chunks are kept as large as possible, since the splittingriged out according to the
control path currently activated; this addresses one ofithebacks of static encoding
methods [4, 2], which may result in an unnecessary slicirigitofector variables.

Second, the 7/ -solver makes aggressive usdayfering, i.e., subsolvers for cheaper
theories are invoked first, and more expensive ones arelaatlly when required, and
on simplified subproblems. The cheapest levels are impleddyy means of flexible
use ofterm rewritingtechiques.

Our approach also relies on a preprocessor, aiming at $inmgithe problem be-
fore the search, and on a novel boolean enumeration algoftthcircuits that generates
partial satisfying assignments.

We evaluate our approach experimentally on a set of realigtustrial benchmarks.
We analyze the impact of the proposed optimizations, shepthiat they all contribute to
gaining efficiency. We then compare our solver with sevaedésof the art approaches,
including MiniSat 2.0, the winners of the last SMT competition bit vectors, and
BAT [13]. The results indicate that our approach, despigegteliminary status of the
implementation, has a great potential: on the hardestinstait is often able to largely
outperform the other approaches.

This paper is structured as follows. In 82 we describe thélpro of Satisfiability
Modulo the theory of bit vectors, and in 83 we describe theipres approaches. In §4
we overview our approach. In 85 we discuss the details of teprpcessing, and in §6
we present the 4/ -solver. In 87 we experimentally evaluate our approachallinin
§8 we draw some conclusions and outline directions for tutasearch.



2 SMT(8v): Satisfiability Modulo the Theory of Bit Vectors

A bit vector of a given widtm is an array of bits and hence it may assume (decimal)
values in the rang®, 2" — 1], accordingly to the binary value expressed by its individua
bits. From now on we will implicitly assume bit vector varlab to have a fixed width,
whose maximal valudl is determined a priori. In the remainder of the paper we shall
use the notatiox" to represent a bit vector variable of widthor simply x when the
width is not important or it can be deduced from the contern&ants will be denoted
either with their decimal or binary value (in the latter cassubscript “b” is added).

The easiest possible theory of bit vectors (here denotedag)) includes only bit
vector variables, constants, and the equality s predicate symbol. Notice that, since
we are dealing with fixed-width bit vectors, any interprietabf the theory must satisfy
implicit finitne dorrn1ain constraints; for instance it is notgsible to satisfy formulae of
the kind AZ;* A°_I1; " # X", because only2different values may be represented
with n bits.

More interesting theories may be obtained with the additibother operators to
3% (€). The most common ones can be divided into three main sets:

core operators {[i : j],:: }, named selection (or extraction) and concatenation respec
tively; i is the most significant bit in the selection¥® j ). The result of a selection
is a bit vector of sizeé — j + 1 whosek-th bit is equivalent to th&+ j-th bit of the
selected term, fok € [0,i — j + 1]. Concatenation returns a bit vector resulting from
the justapposition of the bits of its arguments;

arithmetic operators (and relationsY+, —,*,<}, i.e., plus, minus, multiplication by
constant, and less than. The intended semantic is the omitohatic modulo 2,
n being the width of the arguments of the operators;

bitwise operators { AND , OR, NOT } that apply basic logical functions to corre-
spondent bits of the arguments.

In [9] it is shown a polynomial algorithm to solve ¥ (¢) augmented with core
operators$ 4/ (C)). As soon as other operators are added to the theory, efttienatic
(89 (CA)) or bitwise @ v (CB)) or both 84 (CAB) or 3 4’), the problem of deciding
a conjunction of atoms becomes NP-Hard [3]. In the followiadghit vectorterm is
defined to be either a constant, a variable, or the applitati@an operator to a term. A
bit vectoratomis an application of a relation, <) to two terms.

Given a decidable first-order theory, we call thedecision problenon7 (DEC(7))
the problem of deciding the satisfiability in of sets/conjunctions of ground atomic for-
mulas (r -atomg and their negations in the languagerofWe call a7 -solverany tool
able to decide DE( ). Satisfiability Modulo (the) Theory (SMT(7)) is the prob-
lem of deciding the satisfiability dfoolean combinationsf propositional atoms and
theory atoms. (Consequently, DEEY ) and SMT 3 % ) represent respectively the de-
cision and the SMT problem i .) We call anSMT{7 ) solverany tool able to decide
SMT(7 ). Notice that, unlike with DECr ), SMT(7 ) involves handling also boolean
connectives.



3 An Analysis of Previous Approaches

In this section we overview and analyze the main approadrebé verification of an
RTL circuit design.

Eager encoding into SAT (bit blasting).The traditional approachoit blasting is that
of encoding the problem into a boolean formula, which is tfeehto a boolean solver:
words are encoded into arrays of boolean atoms,samdoperators are decomposed
into their gate-level representation, each gate being debhoaconnective. Pre- and
post-processing steps can further enhance the perforniseeee.g., [11,13,12, 10]).
Notice that the winners of SMT-COMP’06 for SM% % ) were all based on bit blasting.
A variant of this approach is followed in [17, 2]: abstragbmesentations of an RTL
circuit are generated by abstracting away information erdidita path, and the resulting
encoding is then fed into a propositional SAT solver. Therapph in [2] is subject to
loss of information, and iterative refinement may be reqlire

Eager encodings into DEQ3 %). The approaches proposed in [9, 14, 3] encode the
problem into a set of atomic formulas in (fragments 8f)y, which is fed to aB v -
solver. Novel and optimizea@ 4’ -solvers have been introduced there: particular atten-
tion is paid in optimizing the partitioning of bit vectorselto core operators [14] and

in handling modulo-arithmetic operators [3].

Eager encodings into DEG£ 4 (Z)). The approaches proposed in [19, 6] encode the
problem into a set of literals in the theory of linear arithimen the integers44 (Z))
which is then fed to & 4 (Z)-solver: bit-vector variableg;" are encoded as integer
variabless € [0,2" — 1], RTL constructs [19]) are encoded, intoz (Z) constraints.

Eager encoding into SMT(£ 4 (Z)). The approach we proposed in [4] encodes the
problem into an SMTz 4 (Z)) formula, which is fed to an SM(Iz 4 (Z))-solver. The
design is partitioned intoontrol-pathanddata-pathcomponents: control lines are en-
coded as boolean atoms, and control constructs into boclembinations of control
variables and predicates over data-path variables; databit-vector variables and lin-
earizable data-path constructs are encoded similarly eaoDiaQ £ 4 (Z)) approach;
non-linearizable data-path constructs are encoded byldsting, or by means of un-
interpreted functions. Some other constraints are intteduo represent the interface
between the control and data-path lines.

Generalizing a standard terminology of the SMT community/pall the approaches
above eager approachedecause the encodings into SAT, DB®’ ), DEC(£ 4 (Z))
and SMT £ 4 (Z)) respectively are performed eagerly at the beginning of thegss,
before starting any form of search.

We now discuss the above approaches. The key issue of theaags based on
bit-blasting is that they encode bits into booletoms and consequently words into
arrays of boolean atoms and gates ibtmlean connective®©n the one hand, this al-
lows for a straightforward encoding of all constructs of the’ language; moreover,
as all the search is demanded to an external SAT solverpwsalfor selecting the SAT
solver off-the-shelf; more importantly, these approadi&svs for exploiting the full
power of modern boolean solvers in handling the search ddeetaontrol logic. On
the other hand, a predominant part of the computationattéffavasted in performing



useless boolean search on the bitwise encoding of datavpattbles and arithmetical
operations (e.g., up to @2factor in the amount of boolean search for a 32-bit inte-
ger value). In particular, notice that boolean solvers yoeetlly “bad at mathematics”,

in the sense that reasoning on the boolean encoding of atittahoperations causes
a blowup of the computational effort. To this extent, we daat the bit-blasting ap-
proaches arecontrol-path orientet] in the sense that they are well-suited for problems
where the control-path component dominates, but may swifien the data-path com-
ponent dominates, in particular when lots of arithmetiaislved.

The key issue of the encoding-into-DEC) approaches is that they encode words
into termsin some first order theory (typically some fragment of eithes 4 or
£4(Z)), and consequently gates and RTL operators fatetion symbol®f 7. On
the one hand, these approaches allows and adrhsalver for handling each word as
a single term in7, preventing the bit-blasting of the world itself and the sequent
potential blowup in boolean search; moreover, arithmgtierators can be handled di-
rectly and efficiently by an ad-hoc solver. On the other hémaifact that control bits and
gates are encoded into terms and function symbols respicpivevents from exploit-
ing the full power of modern boolean solvers in handling tearsh due to the control
logic. To this extent, we say that the encoding-into-DEC approaches aredata-
path oriented, in the sense that they are well-suited for problems whieeedtata-path
part dominates, in particular when lots of arithmetic isolwed, but may suffer when
the control-path part dominates.

The key issue of the encoding-into-SMT# (Z)) approach is that control bits and
gates are encoded into boolean atoms and connectives tiesfyeevhilst words and
RTL operators are encoded into terms, function and preglieanbols inz 4 (Z) re-
spectively. Remarkably, some bits may have both a conttt-pnd a data-path role,
and have a double encoding. On the one hand, this approaetsditbr exploiting the
power of the boolean solver embedded in the SMA(Z)) solver in handling the
search due to the control logic, preventing the blowup inlé@o search due to the
bit-blasting of data-path words.

On the other hand, it suffers from other important weakresfest, some con-
structs (e.g., bitwise operators) cannot be encodeddm¢Z), and must bit-blasted
anyway; second, the 4 (Z) constraints resulting from the encoding of care’ op-
erations, like selection and concatenation, turns out tedng expensive to handle by
£ 4(Z)-solvers; third, many 4 (Z) constraints resulting from the encoding of some
B9/ constructs prevent and efficient propagation of integaresmbnd boolean values,
corresponding to unit-propagation in the equivalent basted encoding. (These prob-
lems are shared also by the encoding-to-DE@(Z)) approach.) Overall, from our
experience the approach turned out to be less efficient tkzaceed, mostly due to too
many and too expensive calls 07 (Z)-solvers.

We see our encoding-into-SMZT @ (Z)) approach of [4] as a first and very prelimi-
nary attempt to merge control-path-oriented and data-pagmnted approaches. In next
sections we push this idea forward, within the lazy SM¥ ) framework.



4 Alazy approach to SMT(87)

Our novel SMT3 %) solver is based on the layered lazy approach to 8MT(see,
e.g., [5]). Apreprocessotakes as input a representation of (the negation of) an RTL
verification problem, and produces a simpler and equivilesatisfiable SMT3 1)
CNF formulad. The search is based on theolean abstractionf ¢, that is a boolean
formula¢P obtained by substituting every distinsty’-atom in¢ with a fresh propo-
sitional atom.¢ is also called theefinemenbf $P. The boolean abstractiagpP of ¢

is then fed to anodified DPLL enginewhich enumerates a complete ljg}, ..., uf of
partial truth assignments which satisfy. Every time a new assignmept is gener-
ated, the sefy of 8 9 literals corresponding tpip is fed to aB v -solver If pis found

B 9/ -consistent, the is 8 ¥ -consistent and the whole procedure stops. Otherwise, the
B 9/ -solver returns the subsgtC p which caused the inconsistencyjofcalled athe-

ory conflict set The boolean abstractiayP of n is then used by the DPLL engine to
prune the future boolean search (by backjumping and legfd®)). If at the end of the
boolean search none of thgs is founds 4’ -consistent, theth is 3 4’ -inconsistent and
the whole procedure stops.

In order to increase the efficiency of the’ reasoning, the 4’ -solver is organized
into threelayersof increasing expressivity and complexity, s.t. the mongessive lay-
ers come into play only when strictly needed [5]. In particpuihe DPLL engine invokes
the 3 7’ -solver also on assignments under constructieailyy pruning), which can be
pruned if they are found unsatisfiabledr’ . As these checks are not necessary for the
correctness and completeness of the procedure, in earhing calls only the cheaper
layers of thes 9’ -solver are invoked. (We omit the description of other SMTioa-
tions we adopted, which can be found in [5].)

The preprocessor and tiey -Solver are described in details in 85 and 86 respectively.

Notice that, unlike the eager approaches described in §&pproach isazy, in the
sense that the encoding is performed by#he-solver,on deman@ndad hocfor every
branch in the search. Thus, only a strict subset ofaheatoms are assigned by DPLL
and passed to the’ -solver, corresponding to only the sub-circuits that aveigan ac-
tive role by the control variables assigned in the brancls fdgduces the computational
effort required to thes 7 -solver, in particular when expensive arithmetical canss
come into play, and addresses one of the major source ofdiegffy we encountered
with the SMT(£ 4 (Z)) approach [4]. Another advantage is that bit-vector chumks a
kept as large as possible, since the splitting is carriecocrding to the control path
currently activated; this addresses one of the drawbackagdr encoding methods [14,
2, 4], which may result in an unnecessary slicing of bit-vewariables.

5 Preprocessing

The schema of the preprocessor is outlined in the left pdfigafre 1. It consists mainly
on a sequence of six processing steps.

1. Bool to word-1 encoding. The first step addresses the fact that in an RTL circuit
there is not always a clear separation betweendtita pathsand thecontrol paths
in particular, there is no distinction between control §irmd word variables of width



PREPROCESSOR )
Bool/word1 encoding

SOLVER o
Concat. Elimination (match)
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Unconstrained variables ‘ Concat. elimination (no match) ’.:’

Control paths extraction

Frontier propagation

Deduction rules rz

ITE expansion

Formula Normalizer LITERAL NORMALIZATION

TERMBANK Bit-mask Elimination : .
Evaluation of Ground Terms Selection Propagation

Fig. 1. The architecture of the preprocessor and of the second ¢dyke solver.

one. This distinction is crucial when our SMT approach ishibecause the former and
the latter ones must be encoded respectively as propadiitomsand agermsin the
theory [4].

The encoder tags all the nodes of the circuit eithesems (“control”) or aswor d
(“data”): outputs from predicates, < ) and words of width one are taggbkdol ; the
result of concatenations or arithmetic operators is imstagged asor d. The tagging
information is then propagated back and forth to the remagimarts of the circuit.
(Bitwise operators witlhool inputs are converted into boolean operators.) When tag
clashes occurs (e.g., anode tagbed is in inputto a concatenation), they are resolved
with the introduction of a one of twtag-casting operatorswr d1( b)) translates a
bool b into awor d of size 1, andool ( w!), which casts awor d w! into abool . The
former is expanded inte* A (b — w! = 1) A (=b — w = 01), the latter intow! = 11,

2. Control-paths extraction. Whenwor d1(.) constructs occur in matching positions
in an equality, then the equality is split into a conjunctadrequalities, and the equali-
ties between word1 variables are transformed into equicale between booleans. For
instance(t;’ ::wor d1( p) :: to8) = (t3” ::wor d1( g) :: t4®) is rewritten into the equiva-
lent form(t;” =t3") A (p < Q) A (128 = t48).

3. Propagation of unconstrained variables.Industrial benchmarks often contain un-
constrained variables (i.e., input variables that occuy once in the formula) used
to abstract more complex subparts. An unconstrained Jarmay assume an arbitrary
value, and hence we can rewrite the original formgiiato anequisatisfiabléormulag
using the following rulesy(, v1, andv, are unconstrained variabldéss a fresh variable,
pis a fresh propositional variable):

VN s fN vin i veM — M 0 en
"V — N NOT v — f" 0y :Ct)n_’ P
v —th — N v1" AND v," — " vi<UtE0 —p

n n n_4n
th_yn s fn V1" OR v, — fN th<vit£2"-1"—p



4. Frontier Propagation and Variable Inlining. When a boolean formule is as-
serted to a truth value, the truth value information may hppgated backward to its
subformulae. For instance, ¢fis a conjunction and is asserted to true, also its con-
juncts must be true. During this process of frontier propiagat is possible to collect
every equality between @or d variable and a constant that has been marked as true
and replace every occurrence of the variable with the cahsthe whole process is re-
peated until a fixpoint is reached. (Typically a couple ofétsns are enough to reach
convergence.)

5. Enhanced Term-ITE expansion. Term-ITE constructs (ITg are not part of the
language of SMT{B 7), and hence they have to be expanded. The naive approach is to
introduce a fresh variable for every occurrence of a Teri;ldnd then add two im-
plications to the original formula. For instande? = ITE;(q,t2",t3") is rewritten into
t1"=1"A(q— " =1t,") A (=g — " = t3"). When a formula contains a considerable
amount of Term-ITEs, the generation of a corresponding rarmffresh variables neg-
atively affects performance. In many applications, howelerm-ITE constructs are or-
ganized in complex clusters with the structure of a direat®dlic graph. Any maximal
cluster in the formula can be transfomed into a corresparigleslean-ITE (ITk) clus-

ter by pushing the external predicate toward the leaveseobthG. For instance;" =
ITE: (qs, ITE (g2, t2",t3"),t4") can be rewritten into ITHqy, ITEp(g2, t1" =t2",t1" =
t3"),t1" = t4") saving the introduction of two fresh variables.

6. Normalization. In the language of8 the problem of transforming a generic bit
vector expression into a canonical form is an NP-Hard probteitself. Weaker, but
effective, polynomial transformations on bit vector terare performed, for instance
elimination of concatenation with perfect matek™ :: to" = t3™ :: t4" is reduced to the
conjunction oft;™ = t3™ andt," = t4".

During the whole six-step process above, a set of cheap andl*llinear transfor-
mations are applied in order to simplif/v’ terms.
Evaluation of Ground terms. Whenever a term is composed solely of constants it is
replaced by the constant of the appropriate value; singifar boolean formulas. For
example, 0109:: 0001, + 00001003} is evaluated into 01001040

Bit-masks elimination. When a constant occurs in a binary bitwise operation, it is
rewritten into concatenations of maximal sequences of & Hs. For example, the
constant 000111Q1s split as 009 :: 111y, :: Oy :: 1. Then, similar splitting is applied
to the other term, and then the operator is evaluated. Ftarios t® AND 00011103

is rewritten into 00Q:: t[4:2] :: Op ::t[0: C].

Selection propagation. Selection operators are propagated through concateraattbn
bitwise operators. After this process, only selection oniabdes, ITE's or arithmetic
operators can be left.

These transformations are implemented within the “ternkbamlayer that allows
for the dynamic creation of new terms, implementing perébetring; both the prepro-
cessor and the solver, described in next section, rely otethebank, and benefit from
the transformations above.



6 An Incremental and Layered 34/ -Solver for SMT(38)

In this section we describe the1’ -solver, that decides the consistency of a set of bit
vector literals, and in case of inconsistency, it producesdlict set. Thes 4’ -solver is
intended to be called on-line, while the boolean searchristtocting a boolean model,
in order to apply early pruning. For this reason, it is impéed to béncrementabnd
backtrackablei.e., it is possible to add and remove constraints withestarting from
scratch.

The theory solver ifayered[5], i.e. it analyzes the problem at hand trying to detect
inconsistency in layers of theories of increasing powethabcheaper layers are called
first. Thefirst layeris a solver for the logic of Equality of Uninterpreted Fuocis
(£ u 7). Here all bit vector operators (functions and predicates)treated as unin-
terpreted, the finiteness of the domain and codomain of bi@saand functions is not
taken into account; all constants are however treated isaisThez u # solver [16]
is incremental, backtrackable, produces conflict sets,hascdthe capability to deduce
unassigned theory literals, which will be propagated tothelean enumerator. In this
layer, conflicts of the typ& < y::z, =(x <w), w =y::z can be detected.

Thesecond layeis an incomplete solver, based on a set of inference ruldsitfor
vector constraints, that can be applied in an incrementhibacktrackable manner. The
main idea driving the design of this solver is that a compelger is very seldom nec-
essary. Thus, a solver based on a small number of infereres thiat can be efficiently
implemented, may suffice to decide most formulas.

Thethird layer is a complete solver for conjunctions of bit vector constisithat
ultimately relies on the encoding into4 (Z) proposed in [6]. In early pruning, the
first two, cheaper layers are active; the third, more expensiyer is activated only
in complete calls, when a definite answer is necessary, henva satisfying boolean
assignment is being analyzed.

In the rest of this section, we focus on the second layer, wisiche most novel
component of the solver. The architecture of the second lisygepicted in the right
part of Figure 1. The control is organized into a sequencewfinain stages, described
below. Each of the stages transforms a set of currentlyafdists, by means of a syn-
tactic inference engine, in an incremental and backtrdekabnner.

Similarly to the preprocessor, the solver relies on the teamk, so that whenever
a new term is created, the local simplification rules desdtiim 85 are automatically
applied. In addition, whenever a new literal is created,taof@ormalization rules is
used to obtain simpler literals. The rules include a substteonormalizations applied
in the preprocessor which are described in 85; in additiegated equalities of the
form —(t1 = 11) are turned into the positive correspondent 0. Early termination
is enforced upon detection of inconsistency: wheneveeedlitis reduced to false, the
computation is immediately stopped. The stages are thexolh:

Concatenation Elimination (match). The rule for the elimination of concatenation
with perfect match (see Section 5) is applied to all the ditethat are amenable for
reduction. We notice that the rule does not introduce argctieh operator.

Variable Elimination. Whenever a fact of the form =t is active, andv does not
occur int, then it is removed from the active facts, and every occaeefv in the
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other active facts is replaced byDuring substitution, new terms may be generated in
the term bank, so that the corresponding local rules aréeaqpbgether with the literal
normalization rules.

Concatenation Elimination (no match). All top-level concatenations are simplified,
regardless of the match of the sizes. In particular, eackieatact having the form
t1M:t" = t3™ M is replaced by, ™ = t3[m+ n: nj andty" =t3[n—1: 0]. We notice that
at this stage concatenations may be replaced by selectemsring thus the creation
of new terms, which in turn fire local rules and literal noripation rules.

Deduction Rules.The final step is the application of the following simplifiicet rules,
until fix point is reached (herec” denotes a constant).
1=t tr=t3 1<ty ta<ts c<t; t1 <ty A —-A

L =1s Trl <t Tr2 cri<t, Tr3 T Exc

Some remarks are in order. First, the issue of incremepntatitt backtrackability
poses nontrivial constraints on the implementation of thges; in particular, variable
elimination is not applied destructively, and it is, in therent implementation, the
most expensive stage. It is likely that additional efficientay be achieved by means
of optimizations of the underlying data structures. Se¢aorav rules can be plugged
in with relatively little effort, possibly in a way that is gendent on the application
domain; additional efficiency could be achieved by scorimgjrt activity on the fly,
with a mechanism similar to the VSIDS heuristic for SAT.

Finally, a very relevant issue is the generation of infoieafi.e., small) conflict
sets. Currently, if an inconsistency is detected, the leav¢he proof tree can be taken
as a conflict set. However, the conflict sets generated mataicoinrelevant literals,
depending on the order in which inference rules are appledtently, we start from
the assumptions of the proof and obtain a smaller confliat sgtmeans of deletion
filtering [8]: one constraint is dropped from the conflict,s&td then consistency is
checked again. If the set is still inconsistent, the dropgmetstraint was irrelevant. This
is repeated until a fix point is reached, and the remainingfkterals can be used as
a conflict set. A method based on proof storing and analysildee used to improve
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Fig. 3. Scatter plots between MathSAT and the other solvers. Eiettitmes measured as 0
seconds have been adjusted 1010seconds.

the quality of the conflict set; however, an efficient implertation may be nontrivial
to achieve, and it is left as the object of future research.

7 Experimental Evaluation

The approach described in previous sections was implemientain the MathSAT
system, and was experimentally evaluated on industriddication problems. In this
section we first describe the experimental set up, and rép®evaluation in two parts.
First we show the impact of the different optimizations. @et, we compare our solver
against alternative approaches.

Experimental Set Up We evaluated our approach in a set of industrial benchmarks
provided by Intel. Unfortunately, we can not disclose thedbenarks or any details on
the original application domain.

For the benefit of the reader, in order to give a feeling ofrteeuctural properties
we report in a technical report available at [1] for each & blenchmarks the number
of: constants, words of size 1, words of sizel, equalities, core operators, arithmetic
operators, bitwise operators, ITEs, boolean connectidesalso report the size of the
boolean abstraction of the SM# %) encoding, and the size of the bitblasted formula.

The experiments were run on an Intel Xeon 3GHz processorimgritinux. For
each run, the time limit was set to 1 hour and the memory linai$ set to 1500 MB.

Evaluation of the Optimizations In this section we compare the impact of eg-layering
and enhanced ITE expansion on the overall performance sftlver. We compare the
best configuration (the one with all optimizations enahladpinst configurations that
have a single option disabled at a time, and against theibasgnfiguration, where no
optimization is active. Results are shown in figure 2. Thelteslearly show that each
of the optimizations contributes to improving the perfonoe; we also see that without
them the solver is virtually unable to solve any of the inséirey instances.
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Comparison with Other Solvers We compared our approach against the following
systems.

— MiniSat 2.0, considered as the best system based on biigag¥e are using the
SatELite-like simplifying version as it performed betterthese instances.

— STP, as one of the winners of the bit-vector division of tiedaSMT-COMP com-
petition; STP extends bit blasting with a normalizatiorfmocessing step, built on
top of an incremental SAT engine. We are using a recent vergiovided by the
authors of STP.

— Yices 1.0.3, as the other winner of the latest SMT-COMP inbiheector division.
To the best of our knowledge, the solver for bit vector reaspimn Yices is based
on bit blasting [10].

— BAT 0.2 is a recently-released system that specializesurtsired, modular prob-
lems with memories. It combines a clever encoding of menemm trewriting tech-
nigues and reduction to SAT.

The problems were given in inputto STP and Yices in SMT forrAatfor MiniSat,
we generated a DIMACS file both before and after the prepsiegsand we used the
one that resulted in better performance, i.e., the one bgfi@processing; surprisingly,
our preprocessor degraded the performance of MiniSatfigntly.

Scatter plots of the execution times can be seen in figure 8aAde seen from the
figure, MathSAT clearly outperforms other solvers on theargj of instances. The
notable exception is BAT which is comparable on the two hstdathough slightly
slower (see Table 1 for the precise time taken).



Instance|MathSAT STP Yices MiniSat BAT

Intel-35 3 3 72 50/>18000 >18000| 42 19| 81 80
Intel-37 4 3 84 68|>18000 >18000, 47 17| 80 80
Intel-39 4 4 133 189|>18000 >18000, 35 38| 28 28
Intel-76 (256  76|>18000 >18000{>18000 >18000|1393 8658|344 348
Intel-77 | 29 22 2687 1781(>18000 >18000| 948 559|245 248
Intel-78 |580 252 8451 9699|>18000 >18000{2973 2199|611 611
Intel-79 | 62 36(>18000 9968|>18000 >18000{1929 8065|240 242

Table 1. Execution times for the hardest instances. All times araded to the nearest second.

From the cumulative distribution functions in figure 4 theqentiles can be read.
On the easiest instances Yices is fast, but there are 2%aoedtat cannot solve within
the time limit. MathSAT, on the other hand, is clearly supeapproximately above the
60th percentile.

We now focus on the “hardest” instances, i.e. those inseamteere at least two
systems used an execution time greater than 60 secondstibufza, we extended the
execution time limit to 5 hours. In addition, we experimehigth two different trans-
lations from the source file format. (For each sample in figid@nd 4 the translation
corresponding to the best performance for each solver ters liged.) The results are
reported in Table 1: for each system, we report the resulbédh encodings. We see
that MathSAT outperforms the other solvers, regardlessamistation. We also notice
that the translation schema may induce substantial diftexgin performance, in par-
ticular for STP and MiniSat: with the second translationPSblves one more instance
within the extended time limit, whereas MiniSat performasiderably worse on two
instances. Yices is not able to solve any of these benchmiatthis the time with either
translation, while the performance of BAT is remarkablyotta

8 Conclusions and Future Work

The work described in this paper is motivated by the fact thamy verification prob-
lems, especially in industrial settings, are naturallycdiéed at a level of abstraction
that is higher than boolean — the additional structure igglly used to describe data
paths.

We have developed a new decision procedure for SatisfiaMiitdulo the Theory
of fixed-width bit vectors. The procedure is tailored towsahérd industrial problems,
and has two distinguishing features. First, it is lazy inttihénvokes a solver on the
theory of bit vector®n the flyduring the search. Second, it is layered, i.e. it tries to ap-
ply incomplete but cheap forms of reasoning (e.g. equatityaninterpreted functions,
term rewriting), and deal with complete solvers only whegquieed. As a result struc-
tural information is used to significantly speed up the dgarithout incurring in a sub-
stantial penalty with reasoning about purely boolean pamtan empirical evaluation
performed on industrial problems, our solver outperformasesof-the-art competitor
systems by an order of magnitude on many instances.



In the future, we plan to work on the following problems. Eirthe current im-

plementation can be heavily optimized; in particular theegation of conflict sets is
currently an issue. Second, we plan to investigate the egtfin of advanced theorem
proving techniques. We would also like to experiment withtedction refinement tech-
niques, and to integrate the solver within a CEGAR loop basethe NuSMV model
checker.
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