
The MathSAT 4 SMT Solver (Tool Paper)

Roberto Bruttomesso1, Alessandro Cimatti1, Anders Franzén1,
Alberto Griggio2, and Roberto Sebastiani2

1 FBK-IRST, Povo, Trento, Italy. {bruttomesso,cimatti,franzen}@fbk.eu
2 DISI, Università di Trento, Italy. {griggio,rseba}@disi.unitn.it

Abstract. We present MathSAT 4, a state-of-the-art SMT solver. Math-
SAT 4 handles several useful theories: (combinations of) equality and un-
interpreted functions, difference logic, linear arithmetic, and the theory
of bit-vectors. It was explicitly designed for being used in formal verifica-
tion, and thus provides functionalities which extend the applicability of
SMT in this setting. In particular: model generation (for counterexam-
ple reconstruction), model enumeration (for predicate abstraction), an
incremental interface (for BMC), and computation of unsatisfiable cores
and Craig interpolants (for abstraction refinement).

1 Introduction

In this paper we present MathSAT 4, a modern Satisfiability Modulo Theories
(SMT) solver. Despite its “traditional” name, MathSAT 4 has been completely
redesigned and reimplemented from scratch, and it is thus a completely new
system wrt. MathSAT 3 [3]. Unlike its predecessors, MathSAT 4 has been
explicitly designed for being used in a formal verification setting: in fact, besides
extending the set of “traditional” theories of interest with the theory of bit-
vectors [4], it also provides novel functionalities which are particularly targeted
for usage in FV. To this extent, MathSAT 4 has recently been integrated within
the NuSMV model checker [7] as a workhorse engine for formal verification of
word-level circuits and of timed and hybrid systems.

MathSAT 4 is available at its web page (http://mathsat4.disi.unitn.
it), with documentation, related papers and some performance figures.

2 Architecture

MathSAT 4 is based on the lazy integration schema used in many SMT tools
(see, e.g., [16]). The high-level architecture of the system is shown in Figure 1.
Interface. MathSAT 4 is written in C++. Interaction with MathSAT can
be performed either via files or via a rich C API. The system supports three
different input formats: a native (MSAT) one, the standard SMT-LIB one, and
the one used by the FOCI [13] interpolating prover. (The API supports also
the possibility to use MathSAT 4 as a Theory Context Checker (TCC) [6],
see below.) MathSAT 4 can also interface with external Boolean unsat-core
extractors by exchanging purely-Boolean CNF formulas as DIMACS files.



Preprocessor. After the input formula ϕ is parsed (or generated through the
API), a preprocessing step is performed, consisting of three parts. First, the
problem is simplified by encoding equivalent theory atoms (T -atoms) into a
unique representation, and by propagating top-level information.3 Second, the
formula is converted to CNF. Finally, MathSAT applies static learning [3], i.e. it
adds to the formula small clauses representing T -valid lemmas (e.g. transitivity
constraints) which can speed up the Boolean reasoning process.

Boolean CNF
Formulas

T -solver n

T -solver 1

DPLL Engine

Truth assignment

Model generator

Model

FOCIMSAT C API

Interpolant

Problem clauses

SMT-LIB

SAT/

UNSAT

Preprocessor

Input Formats

Unsat Core

Proof Engine

ProofsModel values

T -lemmas
New atoms

Fig. 1. MathSAT 4 architecture.

DPLL Engine. The core
of the solver is the DPLL
Engine. It receives as input
the CNF conversion of the
original problem, and drives
the search by enumerating
its propositional models and
invoking the T -solver(s) to
check them for consistency,
until either a model is found
or all of them are found in-
consistent. The DPLL Engine
is based on the highly-efficient
Minisat 2 SAT solver.

Like its predecessors, Math-
SAT 4 implements most of
the techniques for optimizing
the interaction of DPLL and
T -solvers (see [16] for a sur-
vey). Notably, it implements
also a novel adapting heuristic for controlling the interleaving between DPLL
steps and T -solver calls.
Theory solvers. In MathSAT 4 the T -solvers are organized as a layered hier-
archy of solvers of increasing expressivity and complexity [3, 4]: if a higher-level
solver finds a conflict, then this conflict is used to prune the search at the Boolean
level; if it does not, the lower level solvers are activated. These T -solvers imple-
ment state-of-the-art procedures for the theories of equality and uninterpreted
functions and predicates (EUF) plus numeric constants and some numeric rela-
tions [14], for difference logic (DL) [10], for the theory of linear arithmetic (LA)
over the rationals (LA(R)) and over the integers (LA(Z)) [12, 3], and a basic
procedure for a fragment of the theory of bit vectors (BV). 4 We are currently
on the way of integrating in MathSAT 4 also the T -solver for the theory of
unbounded reachability (HMP) of [15].

A T -solver gets in input a set of quantifier-free literals µ and checks whether
µ is T -satisfiable or not. In the first case, it also tries to perform deductions in the
form µ′ |=T l, where µ′ ⊆ µ and l is a literal representing a truth assignment to a

3 For example, the formula x = 5 ∧ f(x) < 3 is rewritten into f(5) < 3.
4 Currently, the T -solver for bit-vectors can not be used in DTC with other theories.



not-yet-assigned atom occurring in the input formula. In both cases, the T -solver
generates a compact explanation for the conflict or for the implication, whose
negation (a T -valid clause called T -lemma) is then used by the DPLL engine for
backjumping and learning. The T -solvers can also generate new atoms, which
allows for implementing techniques like Delayed Theory Combination (DTC) [2],
Splitting On Demand [1] or Dynamic Ackermann’s Expansion [11].

In order to handle problems expressed in a combination T1 ∪ T2 of theories,
MathSAT 4 applies the Delayed Theory Combination (DTC) procedure (see
[2]), which is more suitable than the traditional Nelson-Oppen procedure for
exploiting the synergy with the underlying DPLL engine.When T1 is the EUF
theory, an alternative approach is that of reducing to a problem in T2 only by
applying Ackermann’s expansion to all the uninterpreted function symbols. In
such cases, MathSAT 4 applies a simple but effective heuristic [5] to decide
whether to use DTC or Ackermann’s expansion.

3 Novel Functionalities

MathSAT 4 was designed primarily to be used in formal verification settings,
where very often a simple “SAT/UNSAT” answer for an SMT problem is not
enough, and extra information is required. Therefore, several extended function-
alities are provided.
Producing models. For all theories and their combination, when ϕ is satisfi-
able, MathSAT 4 returns a satisfying interpretation I on domain variables with
a congruent partial interpretation of uninterpreted functions and predicates. 5

Extracting T -unsatisfiable cores. MathSAT 4 provides two distinct tech-
niques for extracting a T -unsatisfiable subset of an input clause set (unsat core)
described in [8]. The first (“proof-based”) computes a resolution proof of T -
unsatisfiability and returns all its leaf clauses which are not T -lemmas. The
second (“lemma-lifting”) invokes an external Boolean unsat-core extractor on
the Boolean abstraction of the original clauses plus all T -lemmas computed, dis-
charging all T -lemmas from the result. This benefits from every size-reduction
techniques implemented in Boolean unsat-core extractors available off-the-shelf.
Computing Craig interpolants. MathSAT 4 allows for computing Craig
interpolants of pairs of input SMT formulas [9]. This feature include an optimized
interpolant generator for the full theory LA(R), an ad hoc interpolant generator
for DL, and an interpolant generator for combined theories based on DTC.
Working incrementally. MathSAT 4 can work incrementally, that is, when
invoked in sequence on similar SMT formulas, it reuses information from one
run to the other so that to avoid restarting the search from scratch. This feature
is very important when extending to SMT SAT-based techniques like BMC or
induction-based model checking.
Enumerating all consistent assignments. MathSAT 4 implements an “All-
SMT” functionality: in case of a T -satisfiable input formula ϕ, it can enumerate

5 E.g., in EUF ∪LA, if ϕ is x = 5∧ f(x) < 3, then I may assign x to 5 and f(5) to 2.



a complete set of partial assignments satisfying ϕ which are consistent with the
theory T ; this feature is useful for performing predicate abstraction in a SMT-
based Counter-Example-Guided Abstraction-Refinement (CEGAR) context [6].
Externalizing the control of Boolean search. By means of the TCC inter-
face, MathSAT 4 allows for an external control of the variable selection during
the Boolean search in DPLL. E.g, this has been used in [6] to allow an external
OBDD package for driving the enumeration of T -consistent assignments.

References

1. C. Barrett, R. Nieuwenhuis, A. Oliveras, and C. Tinelli. Splitting on Demand in
SAT Modulo Theories. In LPAR, volume 4246 of LNCS. Springer, 2006.

2. M. Bozzano, R. Bruttomesso, A. Cimatti, T. Junttila, P. van Rossum, S. Ranise,
and R. Sebastiani. Efficient Theory Combination via Boolean Search. Information
and Computation, 204(10), 2006.

3. M. Bozzano, R. Bruttomesso, A. Cimatti, T. Junttila, P. van Rossum, S. Schulz,
and R. Sebastiani. MathSAT: Tight Integration of SAT and Mathematical Decision
Procedures. Journal of Automated Reasoning, 35(1-3), 2005.

4. R. Bruttomesso, A. Cimatti, A. Franzen, A. Griggio, Z. Hanna, A. Nadel, A. Palti,
and R. Sebastiani. A Lazy and Layered SMT(BV) Solver for Hard Industrial
Verification Problems. In Proc. CAV’07, volume 4590 of LNCS. Springer, 2007.

5. R. Bruttomesso, A. Cimatti, A. Franzén, A. Griggio, A. Santuari, and R. Se-
bastiani. To Ackermann-ize or Not to Ackermann-ize? On Efficiently Handling
Uninterpreted Function Symbols in SMT(EUF ∪ T ). In LPAR, volume 4246 of
LNCS. Springer, 2006.

6. R. Cavada, A. Cimatti, A. Franzén, K. Kalyanasundaram, M. Roveri, and R. Shya-
masundar. Computing Predicate Abstractions by Integrating BDDs and SMT
Solvers. In FMCAD. IEEE Computer Society, 2007.

7. A. Cimatti, E. Clarke, E. Giunchiglia, F. Giunchiglia, M. Pistore, M. Roveri, R. Se-
bastiani, and A. Tacchella. NuSMV Version 2: An OpenSource Tool for Symbolic
Model Checking. In CAV, volume 2404 of LNCS. Springer, 2002.

8. A. Cimatti, A. Griggio, and R. Sebastiani. A Simple and Flexible Way of Com-
puting Small Unsatisfiable Cores in SAT Modulo Theories. In SAT, volume 4501
of LNCS. Springer, 2007.

9. A. Cimatti, A. Griggio, and R. Sebastiani. Efficient Interpolant Generation in
Satisfiability Modulo Theories. In TACAS, volume 4963 of LNCS. Springer, 2008.

10. S. Cotton and O. Maler. Fast and Flexible Difference Constraint Propagation for
DPLL(T). In SAT, volume 4121 of LNCS, 2006.

11. L. de Moura and N. Bjorner. Model-based theory combination. In SMT’07, 2007.
12. B. Dutertre and L. de Moura. A Fast Linear-Arithmetic Solver for DPLL(T). In

CAV, volume 4144 of LNCS. Springer, 2006.
13. K. McMillan. An interpolating theorem prover. Theor. Comp. Sci., 345(1), 2005.
14. R. Nieuwenhuis and A. Oliveras. Proof-producing congruence closure. In RTA,

volume 3467 of LNCS. Springer, 2005.
15. Z. Rakamarić, R. Bruttomesso, A. J. Hu, and A. Cimatti. Verifying Heap Ma-

nipulating Programs in an SMT Framework. In ATVA, volume 4762 of LNCS.
Springer, 2007.

16. R. Sebastiani. Lazy Satisfiability Modulo Theories. Journal on Satisfiability,
Boolean Modeling and Computation, JSAT., 3:141–224, 2007.


