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Abstract. We present a fully-symbolic LTL model checking approach
for infinite-state transition systems. We extend liveness-to-safety, a pro-
minent approach in the finite-state case, by means of implicit abstraction,
to effectively prove the absence of abstract fair loops without explicitly
constructing the abstract state space. We increase the effectiveness of the
approach by integrating termination techniques based on well-founded
relations derived from ranking functions. The idea is to prove that any
existing abstract fair loop is covered by a given set of well-founded rela-
tions. Within this framework, k-liveness is integrated as a generic rank-
ing function. The algorithm iterates by attempting to remove spurious
abstract fair loops: either it finds new predicates, to avoid spurious ab-
stract prefixes, or it introduces new well-founded relations, based on the
analysis of the abstract lasso. The implementation fully leverages the ef-
ficiency and incrementality of the underlying safety checker IC3ia. The
proposed approach outperforms other temporal checkers on a wide class
of benchmarks.

1 Introduction

Model checking of liveness properties is a fundamental verification problem. In
finite-state model checking, the most prominent approaches are liveness-to-safety
(L2S) [6] and k-liveness [18], that reduce the problem to one or more safety
checks. Their success is motivated by the possibility to leverage the progress
of SAT-based invariant checking techniques, such as interpolation-based model
checking [34] and IC3 [10].

The verification of liveness properties for infinite-state systems has been pri-
marily tackled in the setting of analysis of imperative program [39, 23, 40, 30, 24,
21], or other specific classes [2, 32, 8, 25, 15]. However, in many practical cases the
model is described as a symbolic transition system (e.g. [12, 35]), or it is compiled

? Partially supported by the Grant Agency of the Czech Republic project 14-11384S.



into a symbolic transition system from a higher level language (e.g. networks of
timed and hybrid automata [16, 43], architecture description language [4, 7, 9]).

In this paper we present a new approach for LTL model checking of infinite-
state transition systems, which we call L2Sia-wfr. The approach relies on two
ingredients. First, we extend liveness-to-safety by means of implicit abstrac-
tion [44]. Implicit abstraction is a form of predicate abstraction that does not
require the explicit construction of the abstract transition system, and is able
to deal with a large number of predicates. In this setting, implicit abstraction
is key to checking the existence of abstract fair loops efficiently, given a set of
predicates. Second, we integrate termination techniques based on well-founded
relations [23]. Specifically, the technique tries to prove that any existing abstract
fair loop is covered by a given set of well-founded relations. At the top level, the
algorithm iterates trying to remove spurious abstract fair loops while maintain-
ing a set of predicates and a set of well-founded relations. New predicates are
added if they expose the spuriousness of the abstract path at hand by show-
ing that its abstract prefixes can not be concretized. The set of well-founded
relations is extended as a result of the analysis of the abstract lasso, guided
by the construction of a ranking function. Within this framework, we also inte-
grate k-liveness, that infers the validity of the property by proving that no path
can fulfill the fairness condition more than a given number of times. As such,
k-liveness is seen as a generic well-founded relation.

We implemented L2Sia-wfr on top of IC3ia, a model checking engine for
safety properties that extends IC3 to the infinite-state case with the use of im-
plicit abstraction at its core [14]. We exploit the fact that the L2Sia-wfr algo-
rithm is highly incremental with respect to the refinement iterations to tighten
the integration with IC3ia.

We carried out an experimental evaluation using liveness property bench-
marks for transition systems and for imperative programs. To compare various
temporal checkers, we translate transition systems to programs, and programs
to transition systems. The results highlight a positive interaction between im-
plicit abstraction and well-founded relations. Overall, L2Sia-wfr outperforms
the competitor temporal checkers, not only on the benchmarks for transition
systems, but also on the ones for imperative programs.

The paper is structured as follows. In Section 2 we discuss the related work.
In Section 3 we present some background. In Section 4 we discuss the L2Sia-wfr
approach, and in Section 5 we discuss the experimental results. In Section 6 we
draw some conclusions, and outline directions for future work.

2 Related Work

The most prominent approaches to symbolic LTL model checking are based
on SAT techniques and typically lift naturally to the infinite-state case using
SMT solvers. k-liveness [18] remains a sound technique in the infinite-state case,
although not complete since even if there is no fair path, the fairness can be
visited an unbounded number of times. In this paper, we embed k-liveness as a



special case of well-founded relation based on counting the occurrences of fairness
along a path.

Liveness-to-safety was extended to infinite-state systems in [42] for a number
of classes of infinite-state systems, namely, (ω-)regular model checking, push-
down systems, and timed automata. However, the approach is in general not
sound for infinite-state transition systems, where a liveness property can be
violated even if there is no lasso-shaped counterexample. In fact, in this paper,
we are applying liveness-to-safety on the abstract state space, which is finite.

Predicate abstraction [28] is a general technique for model checking infinite-
state systems. Once the abstract transition relation is computed, any algorithm
for finite-state systems can be applied. However, on one side, the computation
of the abstract state space typically blows up with few dozens of predicates,
and on the other side, a finite number of predicates is not sufficient to prove
the property (for example, when there are loops with counters that are not
initialized). In this paper, we consider implicit abstraction to tackle the first
problem and well-founded relations for the second.

The counterexample-based refinement we propose is very similar to the one
presented in [3]: in both approaches, if an abstract counterexample contains a
spurious prefix, new predicates are added to the abstraction, while new ranking
functions are discovered in case the lasso is spurious. Our approach is completely
different regarding the method used to prove the property: in [3] a ranking
abstraction is used to add a monitor of a ranking function and a strong fairness
on its decreasing/increasing and then conventional (i.e. “explicit”) predicate
abstraction is used to prove the modified liveness property; our approach is
instead based on reachability analysis and a novel combination of liveness-to-
safety, implicit abstraction, and well-founded relations, all tightly integrated
within an efficient IC3-based algorithm.

Our algorithm presents some similarities also with the work of [24], where
the abstraction is based on the control-flow graph and is refined by removing
paths obtained from spurious counterexamples by generalizing infeasible prefixes
or termination arguments on loops. Both techniques start from the observation
that it is typically easier to refute spurious counterexamples that are due to an
infeasible (and bounded) execution prefix than to syntesize a termination argu-
ment showing the infeasibility of an infinite path. However, the two approaches
differ in the way this observation is turned into an actual procedure. In particu-
lar, the approach of [24] is specialised for imperative programs with an explicit
control-flow graph, and is based on the construction and manipulation of Büchi
automata. Our approach, instead, works on fully-symbolic transition systems,
and is based on implicit predicate abstraction.

Another kind of abstraction, targeting liveness properties, is transition predi-
cate abstraction [40]. It extends the classical predicate abstraction by annotating
abstract states with abstract transitions. It builds on transition invariants [39]
to reduce liveness to fair termination. The technique proves that abstract transi-
tions are well-founded to determine termination. To prove the liveness property,
the technique determines whether all fair states are terminating. Our approach



differs because it uses predicate abstraction (and well-known refinement tech-
niques) and symbolic liveness model checking techniques such as liveness-to-
safety and k-liveness.

Other techniques such as [23, 39, 11] focus on the specific problem of termina-
tion, which is reduced to a binary reachability using disjunctively well-founded
invariants. They have also been extended to address temporal properties as in
[21, 22].

There are several other approaches to the verification of special classes of
infinite-state systems such as (ω-)regular model checking [8], push-down sys-
tems [25], timed and hybrid automata [15]. The current paper focuses on the
verification of generic symbolic transition systems. Specialization of the pro-
posed methods for the above classes is left to future work.

3 Background

Transition Systems. Our setting is standard first order logic. We use the
standard notions of theory, satisfiability, validity, logical consequence. We denote
formulas with φ, ϕ, ψ, I, T , variables with x, y, and sets of variables with X, Y ,
X, X̂. A literal is an atomic formula or its negation. Given a formula ϕ and
the set of its atoms A, an implicant is a conjunction of literals over A that
implies ϕ. In this paper, we shall deal with linear arithmetic formulas, that
is, Boolean combinations of propositional variables and linear inequalities. A
transition system S is a tuple 〈X, I, T 〉 where X is a set of (state) variables,
I(X) is a formula representing the initial states, and T (X,X ′) is a formula
representing the transitions. Given a formula φ over variables X, we denote with
φ′ [φ〈n〉, respectively] the formula obtained by replacing each x ∈ X with x′ [x
with n primes] in φ. A state of S is an assignment to the variables X. A [finite]
path of S is an infinite sequence s0, s1, . . . [resp., finite sequence s0, s1, . . . , sk]
of states such that s0 |= I and, for all i ≥ 0 [resp., 0 ≤ i < k], si, s

′
i+1 |= T .

Given two transitions systems S1 = 〈X1, I1, T1〉 and S2 = 〈X2, I2, T2〉, we denote
with S1 × S2 the synchronous product 〈X1 ∪X2, I1 ∧ I2, T1 ∧ T2〉. A predicate

is a formula over state variables. Given a set P of predicates and a path π
def
=

s0, s1, . . . of a transition system, we call the abstraction of π wrt. P , denoted[
π̂
]
P

, the sequence of sets of states
[
ŝ0
]
P
,
[
ŝ1
]
P
, . . . obtained by evaluating the

predicates in P in the states of π. Given a predicate φ, the invariant model
checking problem, denoted with S |=inv φ, is the problem to check if, for all
finite paths s0, s1, . . . , sk of S, for all i, 0 ≤ i ≤ k, si |= φ.

Linear-time Temporal Logic verification using symbolic automata-
based techniques. We use the standard notions of Linear-time Temporal Logic
(LTL) formulas and their semantics wrt. infinite paths of a symbolic transition
system, as can be found e.g. in [37]. We denote temporal operators in boldface
(e.g. F for Finally, G for Globally, X for neXt, U for Until). Given a tran-

sition system S
def
= 〈X, I, T 〉 and an LTL formula φ over X, we focus on the



model checking problem of finding if, for all infinite paths π of S, φ is true in π.
We denote this with S |= φ. The automata-based approach [45] to LTL model
checking consists of building a transition system S¬φ with a fairness condition
f¬φ, such that S |= φ iff S × S¬φ |= FG¬f¬φ. Showing that S 6|= φ amounts to
find a counterexample in the form of a fair path, i.e., a path that visits the f¬φ
infinitely many times. In finite-state systems, if φ does not hold, there is always
a counterexample in lasso-shaped form, i.e., formed by a prefix (or stem) and a
loop. In the following, without loss of generality, we assume that the automata-
based transformation has been applied to the LTL model checking problem, and
consider a problem in the form S |= FG¬f¬φ, where φ is a formula whose atoms
are either propositional variables or linear arithmetic (in)equalities. When clear
from the context, we also drop the subscript ·¬φ, and simply use FG¬f .

Liveness to safety (L2S). The liveness to safety reduction (L2S) [6] is a
technique for reducing an LTL model checking problem on a finite-state transi-
tion system to an invariant model checking problem. The idea is to encode as
an invariant property the absence of a lasso-shaped path violating the property
FG¬f . This is achieved by transforming the original transition system S to the
transition system SL2S, introducing a set X of variables containing a copy x
for each state variable x of the original system, plus additional variables seen,

triggered and loop. Let S
def
= 〈X, I, T 〉. L2S transforms the transition system in

SL2S
def
= 〈X ∪XL2S, IL2S, TL2S〉 so that S |= FG¬f if and only if SL2S |= ¬badL2S,

where:

XL2S
def
= {seen, triggered, loop} ∪X

IL2S
def
= I ∧ ¬seen ∧ ¬triggered ∧ ¬loop

TL2S
def
= T ∧

[∧
X x↔ x′

]
∧
[
seen′ ↔ (seen ∨

∧
X(x↔ x))

]
∧
[
triggered′ ↔ (triggered ∨ (f ∧ seen′))

]
∧
[
loop′ ↔ (triggered′ ∧

∧
X(x′ ↔ x′))

]
badL2S

def
= loop

The variables X are used to non-deterministically guess a state of the system
from which a reachable fair loop starts. The additional variables are used to
remember that the guessed state was seen once and that the signal f was true
at least once afterwards.

Termination via disjunctive well-founded transition invariants. If S is a
transition system with reachable states R and transition relation T , a relation ρ
over the states of S is said to be a transition invariant if it contains the transitive
closure of T restricted to the states in R (i.e. T+∩(R×R) ⊆ ρ) [39]. A binary re-
lation ρ ⊆ Q×Q is well-founded if every non-empty subset U ⊆ Q has a minimal
element wrt. ρ, i.e. there is m ∈ U such that no u ∈ U satisfies ρ(u,m). A rela-
tion is said to be disjunctively well-founded if it is a finite union of well-founded
relations. Termination of a program can be reduced to finding a (disjunctively)



well-founded transition invariant for it. The technique of [23] reduces the prob-
lem of finding a disjunctively well-founded transition invariant to the verification
of invariant properties. It works on imperative programs with an explicit repre-
sentation of the control-flow graph (although in principle it can be applied also in
a fully-symbolic setting). A given set of well-founded relations W is conjectured
to be a transition invariant for the program. This condition is encoded as an
invariant property, and checked with an off-the-shelf invariant-checking engine.
In case of failure, the encoding is refined in a counterexample-guided manner
by adding new well-founded relations to W , obtained by synthesizing ranking
functions for potentially non-terminating lasso-shaped paths in the control-flow
graph.

IC3 with implicit abstraction. IC3 [10] is a SAT-based algorithm for the
verification of invariant properties of transition systems. It incrementally builds
an inductive invariant for the property by discovering relatively-inductive for-
mulas obtained by generalization while disproving candidate counterexamples.
A a novel approach to lift IC3 to the SMT case has been recently presented in
[14]. The technique is able to deal with infinite-state systems by means of a tight
integration with predicate abstraction [28]. The approach leverages Implicit Ab-
straction [44] to express abstract transitions without computing explicitly the
abstract system, and is fully incremental with respect to the addition of new
predicates. The main idea of IC3 with Implicit Abstraction (IC3ia) is that of
replacing the relative induction check of IC3, which is the central operation
of the algorithm, with an abstract version, defined using implicit abstraction.
Given a transition system S = 〈X, I, T 〉, a formula ϕ(X) representing a set of
states, and an overapproximation F (X) of states of S reachable in up to k steps,
a relative induction query determines whether ϕ is inductive relative to F , by
checking if the formula ϕ(X)∧F (X)∧T (X,X ′)∧¬ϕ(X ′) is unsatisfiable. Given
a set of state predicates P = {pi(X)}i, and assuming that both F and ϕ are
Boolean combinations of predicates from P , the corresponding abstract query is
the check for unsatisfiability of the following SMT formula:

ϕ(X)∧F (X)∧T (Y, Y ′)∧
∧
pi∈P [(pi(X)↔ pi(Y ))∧ (pi(X

′)↔ pi(Y
′))]∧¬ϕ(X ′)

where Y, Y ′ are sets of fresh variables. Using the above, IC3 can be generalized
from SAT to SMT with very little effort, at the cost of introducing spurious error
paths. When this happens, the abstraction can be refined in a counterexample-
guided manner, using standard techniques for extracting new predicates (e.g.
interpolation). The loop continues until either a real counterexample is found
(and so the property does not hold), no more counterexamples are found (and
so the abstraction is precise enough to conclude that the property holds), or
resources (e.g. time or memory) are exhausted. We refer the reader to [14] for
more details about IC3ia.



4 Liveness-to-safety for infinite-state systems

Top-level Algorithm. We reduce the problem of checking an LTL property
FG¬f on a transition system S to a sequence of invariant checking problems
S0 |=inv φ0, S1 |=inv φ1, . . .. For each j, Sj and φj are the result of an encod-
ing operation dependent on given sets of state predicates P and well-founded
relations W : Sj , φj := encode(S, f, P,W ). encode ensures that if Sj |=inv φj ,
then S |= FG¬f , in which case the iteration terminates. If Sj 6|=inv φj , we
analyze a (finite) counterexample trace π in Sj to determine whether it corre-
sponds to an (infinite) counterexample for FG¬f in S. If so, then we conclude
that the property doesn’t hold. Otherwise, if we can conclude that π doesn’t
correspond to any real counterexample in S, we try to extract new predicates P ′

and/or well-founded relations W ′ to produce a refined encoding: Sj+1, φj+1 :=
encode(S, f, P ∪ P ′,W ∪W ′), where P ′,W ′ := refine(Sj , π, P,W ). If we can
neither confirm nor refute the existence of real counterexamples, we abort the ex-
ecution, returning “unknown”. We might also diverge and/or exhaust resources
in various intermediate steps (e.g. in checking Sj |= φj or during refinement).
In the following, we describe in detail our encoding and refinement procedures.
We begin in §4.1 with a simplified version that only uses predicates from P , i.e.
W = ∅. We then describe how to extend the encoding to exploit also well-founded
relations in §4.2.

4.1 Liveness-to-safety with implicit abstraction

Our first contribution is an extension of the L2S reduction described above
to the infinite-state case. We first note that the original L2S transformation
is not sound for infinite-state systems. This is because L2S produces a transi-
tion system that reaches the error condition if and only if there exists a lasso-
shaped path. While for finite-state systems it is enough to consider lasso-shaped
counterexamples, this is not true in the infinite-state case. Consider the tran-
sition system S = 〈{x}, x = 0, x′ = x+ 1〉, with x integer, and the property

φ
def
= FG(x < 5). Clearly, φ does not hold in S. Suppose to apply the L2S trans-

formation to S as described in the previous Section, obtaining the transition
system SL2S. Since in S there are no lasso-shaped paths, in SL2S there are no
paths such that the value of x (the copy of the variable x introduced in SL2S) is
equal to x. Thus, SL2S is safe even if S 6|= φ.

We overcome this problem by incorporating implicit abstraction in the L2S
encoding. Intuitively, the idea is to search for a sufficiently precise predicate
abstraction of the original system, if there is one, that does not admit a path
visiting the fairness condition an infinite number of times. This exploits the
fact that predicate abstraction preserves the validity of universal properties [19]
(therefore, if a property FG¬f holds in the abstract system, then it holds also
in the concrete one).

In fact, we do not need to compute the full predicate abstraction of the
system S. Instead, we characterize abstract paths directly in the property, by
reducing the LTL model checking problem on FG¬f to proving the absence



of paths with an abstract fair loop. Given a set of predicates P = {pi(X)}i,
the encoding consists of storing only the truth assignments to the predicates
non-deterministically, and detecting a loop if the system visits again the same
abstract state, with the fairness signal f satisfied at least once in the loop.
More specifically, from a system S = 〈X, I, T 〉, a property FG¬f , and a set
of predicates P , our abstract L2S transformation (αL2S) produces a system
SαL2S = 〈X ∪XαL2S, IαL2S, TαL2S〉 and an invariant property ¬badαL2S as fol-
lows:

XαL2S
def
= {seen, triggered, loop} ∪ {cpi | pi ∈ P}

IαL2S
def
= I ∧ ¬seen ∧ ¬triggered ∧ ¬loop

TαL2S
def
= T ∧

[∧
pi∈P cpi ↔ c′pi

]
∧
[
seen′ ↔ (seen ∨

∧
pi∈P (pi ↔ cpi))

]
∧
[
triggered′ ↔ (triggered ∨ (f ∧ seen′))

]
∧
[
loop′ ↔ (triggered′ ∧

∧
pi∈P (p′i ↔ c′pi))

]
badαL2S

def
= loop

where XαL2S is a set of fresh Boolean variables.

Theorem 1 (αL2S soundness). Let S = 〈X, I, T 〉 be a transition system, P
a set of predicates over X, and ψ an LTL property FG¬f . Let the system SαL2S
and invariant property ¬badαL2S be the results of applying αL2S to S and ψ.
Then SαL2S |=inv ¬badαL2S only if S |= ψ.

Proof. First, we observe that all initial states I are represented in IαL2S, and
that if we take any state s of S and any successor s′ of s under T then there
exist corresponding states sαL2S and s′αL2S related by TαL2S. This can be seen
by noticing that the extra constraints added to T to obtain TαL2S do not restrict
the values of the original variables of the system. Therefore, we can lift the cor-
respondence relation to paths, and conclude that every path π of S corresponds
to at least one path of SαL2S.

Suppose now by contradiction that SαL2S |=inv ¬badαL2S, but S 6|= FG¬f .

Then, there exists an infinite path π
def
= s0, s1, . . . of S in which f holds infinitely-

often. Let π̂
def
= ŝ0, ŝ1, . . . be a path in SαL2S corresponding to π, and let

[
π̂
]
P

def
=[

ŝ0
]
P
,
[
ŝ1
]
P
, . . . be its abstraction wrt. P . Since P is finite, so is the number

of different states in
[
π̂
]
P

. Let i be a position in
[
π̂
]
P

such that all different

abstract states occur at least once in
[
ŝ0
]
P
, . . . ,

[
ŝi
]
P

. Let j > i be a position
in π such that sj |= f . Since π is infinite and f holds infinitely-often, j must
exist. Then,

[
ŝj
]
P

must be equal to one of the states in
[
ŝ0
]
P
, . . . ,

[
ŝi
]
P

, and
therefore ŝ0, . . . , ŝj is a counterexample for ¬badαL2S in SαL2S, which contradicts
our initial assumption. ut

Counterexamples and refinement. If ¬badαL2S holds in SαL2S, then S |=
FG¬f . The converse, however, is not true. A counterexample path leading to
badαL2S in SαL2S might correspond to a real counterexample in S, but it might



also be due to an insufficient precision of the abstraction induced by the pred-
icates P . We deal with this case using the following counterexample-guided re-
finement step. A violation of the property badαL2S in SαL2S implies that the
counterexample path forms a lasso in the abstract state space induced by the
predicates P . We first search for a concrete lasso witnessing a real violation of
the LTL property, using standard bounded model checking. If this fails, we try
to prove that the abstract lasso is infeasible. We check an increasing number of
finite unrollings of the lasso, and, upon infeasibility, we extract new predicates
from sequence interpolants, similarly to popular refinement strategies used for

invariant properties (e.g. [31]). More specifically, let π
def
= s0, . . . , sl, . . . , sl+k be

a finite path in SαL2S such that sl+k |= badαL2S, sl−1 |= ¬seen and sl |= seen.
Let

[
π̂
]
P

be the abstraction of π wrt. P . We search for the smallest integer i ≥ 0
such that the formula

I ∧
[
ŝ0
]
P
∧ T︸ ︷︷ ︸

φ0

∧ . . . ∧
[
ŝl−1

]〈l−1〉
P

∧ T 〈l−1〉︸ ︷︷ ︸
φl−1

∧
∧i
j=0

[ [
ŝl
]〈l+j·k〉
P

∧ T 〈l+1+j·k〉︸ ︷︷ ︸
φl+1+j·k

∧ . . .

. . . ∧
[
ŝl+k−1

]〈l+k−1+j·k〉
P

∧ T 〈l+k−1+j·k〉︸ ︷︷ ︸
φl+k−1+j·k

]
∧
[
ŝl+k

]〈l+k+i·k〉
P︸ ︷︷ ︸
φn

(1)

is unsatisfiable. If i exists, we then use an interpolating SMT solver to produce
a sequence interpolant ι1, . . . , ιn−1 for φ0, . . . , φn, and extract the set P ι of all
the atomic predicates in ι1, . . . , ιn−1, to be added to the set of predicates used
at the next iteration.

4.2 Extending liveness-to-safety with well-founded relations

The abstract L2S transformation described above is inherently limited in the
kind of properties it can prove. This is not only due to the potential diver-
gence of the refinement loop, which is a possibility shared by all approaches
based on predicate abstraction applied to undecidable problems, but also to
the fact that a single refinement operation may not terminate. If the abstract
counterexample that is being simulated can be concretized only with paths
that are not in a lasso-shaped form, then (1) will always be satisfiable. How-
ever, refinement might not terminate even if the abstract path cannot be con-
cretized. This happens in all cases in which there is no feasible concrete path
that executes the abstract loop an infinite number of times, but all finite un-
rollings of the loop are instead concretizable. As an example, consider the system

S
def
= 〈{x1, x2}, (x1 = 0) ∧ (x2 ≥ 0), (x′2 = x2) ∧ (x′1 = x1 + 1)〉 with x1, x2 inte-

gers, the property ψ
def
= FG(x1 > x2), and the predicates P

def
= {(x1 ≤ x2), (0 ≤

x2), (x1 = 0)}. The property holds, but αL2S will not be able to prove it.
In fact, αL2S admits an abstract path with a self loop on the abstract state
〈(x1 ≤ x2), (0 ≤ x2),¬(x1 = 0)〉. In this case, the unrolling of the abstract loop
will not terminate: any finite path of S in which the abstract loop is unrolled i
times is feasible, e.g. by starting from the initial state 〈x1 = 0, x2 = i+ 1〉.



We address the problem of abstract counterexamples whose finite prefixes
are all feasible by extending our encoding to incorporate well-founded relations.
The intuitive idea is to prove that such abstract counterexamples are spurious
and to block them by finding suitable termination arguments in the form of
(disjunctively) well-founded transition invariants. The extended αL2S reduction
with well-founded relations, denoted with αL2S↓, takes as input a transition

system S
def
= 〈X, I, T 〉, an LTL property FG¬f , a set P of state predicates, and

a set W of well-founded binary relations. The encoding extends αL2S producing

a transition system SαL2S↓
def
= 〈XαL2S↓ , IαL2S↓ , TαL2S↓〉 and an invariant property

¬badαL2S↓ defined as:

XαL2S↓
def
= X ∪XαL2S ∪ {x0, x | x ∈ X} ∪ {r, s, w}

IαL2S↓
def
= IαL2S ∧

∧
x∈X(x0 = x) ∧ r ∧ ¬s ∧ w

TαL2S↓
def
= TαL2S ∧

∧
x∈X(x′0 = x0) ∧

[
w′ ↔ (w ∧ (f → r))

]
∧ Tmem ∧ Tcheck

Tmem
def
=

[
(s↔ s′) ∧

∧
x∈X(x′ = x)

]
∨
[
(seen ∧ ¬s ∧ s′ ∧ f) ∧

∧
x∈X(x′ = x)

]
Tcheck

def
= r′ ↔

[
r ∧

(
(s′ ∧ f ′)→

∨
W ′
)]

badαL2S↓
def
= (loop ∧ ¬w)

where r, s, and w are additional auxiliary Boolean variables, and for every vari-
able x ∈ X, two fresh variables x0 and x are introduced, representing the initial
value of x and a stored value of x at some previous occurrence of f respectively.

Intuitively, we weaken the invariant ¬badαL2S of §4.1 by allowing abstract
loops with the fairness f to occur as long as w holds. The variable w initially
holds and can change its phase at most once, when the current valuation of X
and the stored valuation of X do not satisfy any of the relations in W . In the
subformula Tcheck, the variable r captures the truth value of this test and the
variable s ensures the test is carried out only when the valuation of X captures
some previous valuation of X stored non-deterministically by the subformula
Tmem.

Theorem 2 (Soundness). Assuming a fixed finite collection W of well-founded
relations, if SαL2S↓ |=inv ¬badαL2S↓ then S |= FG¬f .

In order to prove the Theorem, we need the following lemma.

Lemma 1. For any infinite suffix π+ of a path π satisfying GFf and any finite
set W of well-founded relations there is a pair of states π+1 and π+2 satisfying
f such that (π+1, π+2) is not in any relation in W .

Proof. Let πf denote the transitive closure of π+ restricted to states where f
holds, i.e. an infinite graph over nodes corresponding to those states of π+ that
satisfy f and edges connecting nodes πf i and πf j when the latter is reachable
from the former. Because all the states lie on a single straight path, the graph
is complete. And suppose all edges (πf i, πf j) are covered by W . By Ramsey’s

theorem [41] there exists a complete infinite subgraph πWk
of πf whose edges are



all covered by Wk ∈ W for some k. The subgraph πWk
forms an infinite chain

in the set of states in the ordering imposed by the path π+. This is in conflict
with the fact that all the relations in W are well-founded and thus do not admit
infinite chains. ut

We can now prove Theorem 2.

Proof (Theorem 2). First, with an argument analogous to that used for proving
Theorem 1, we can conclude that every path π of S corresponds to at least one
path of SαL2S↓ .

Let us assume (by contradiction) SαL2S↓ is safe and S 6|= FG¬f , then there

exists a path π
def
= s0, s1, . . . of S where f appears infinitely often (the witness

to violation of the property FG¬f). Let π̂
def
= ŝ0, ŝ1, . . . be a path in SαL2S↓

corresponding to π and let
[
π̂
]
P

be its abstraction wrt. P . Let
[
ŝk
]
P

be the

first step where all the distinct abstract states occurring on
[
π̂
]
P

were visited at
least once. By Lemma 1 there are si2 and si3 such that k < i2 < i3 and (si2 , si3)
are not in any relation in W . But

[
ŝi3
]
P

must be equal to some state
[
ŝi1
]
P

for

i1 ≤ k. Thanks to Tmem, X stores the valuation of X at ŝi2 and preserves it for
the rest of the path. There exists a valuation of the variables {cpi | pi ∈ P} and
an induced partitioning 〈ŝ0, . . . , ŝi1 , . . . , ŝi2 , . . . , ŝi3 , . . .〉 of path π̂ such that the
predicates pi ∈ P assume the values of the corresponding cpi at ŝi1 and ŝi3 , and
f ∈ ŝi1 , ŝi2 , ŝi3 , and (si2 , si3) is not in any relation in W . The variables seen,
triggered, and s become satisfied after ŝi1 and the literals loop, ¬w, and ¬r
become satisfied at ŝi3 . Therefore, there exists some positive integer n such that

IαL2S↓ ∧ TαL2S↓ ∧ . . . ∧ T
〈n−1〉
αL2S↓

∧ bad〈n〉αL2S↓
is satisfiable and thus π̂ violates the invariant property ¬badαL2S↓ in finite num-
ber of steps, which contradicts our initial assumptions. We conclude that if
SαL2S↓ satisfies the invariant property ¬badαL2S↓ then S |= FG¬f . ut

Counterexamples and refinement. In order to refine the extended encoding
in case of spurious counterexamples, we modify the procedure described in §4.1
as follows. We first check if the set of predicates P can be refined by blocking a
finite unrolling of the abstract loop (or if a real lasso-shaped counterexample can
be found). We set an upper bound on the maximum number of unrollings of the
abstract loop. If this bound is reached, we try to prove that no infinite unrolling
of the loop exists by finding a suitable termination argument based on ranking
functions. A violation of ¬badαL2S↓ implies that the abstract counterexample

path
[
π̂
]
P

def
=
[
ŝ0
]
P
, . . . ,

[
ŝl
]
P
, . . . ,

[
ŝj
]
P
, . . . ,

[
ŝk
]
P
, . . . ,

[
ŝl+n

]
P

forms a lasso in

the space of the predicates P , with stem
[
π̂stem

]
P

def
=
[
ŝ0
]
P
, . . . ,

[
ŝl−1

]
P

and

loop
[
π̂loop

]
P

def
=
[
ŝl
]
P
, . . . ,

[
ŝl+n

]
P

. Within the loop there are two distinct steps[
ŝj
]
P

and
[
ŝk
]
P

that both satisfy f but (
[
ŝj
]
P
,
[
ŝk
]
P

) is not in any relation in
W . Let ϕstem and ϕloop be defined as:

ϕstem
def
=
∧l−1
i=0(

[
ŝi
]〈i〉
P
∧ T 〈i〉) ∧

[
ŝl
]l
P

ϕloop
def
=
∧l+n
i=l+1(T 〈i−1〉 ∧

[
ŝi
]〈i〉
P

)



where T is the transition relation of the original system S. If T doesn’t contain
disjunctions, then several off-the-shelf techniques for ranking function synthe-
sis (e.g. [38, 30]) can be used for constructing a termination argument for the
simple lasso represented by ϕstem ∧ ϕloop. However, in general T does contain
disjunctions. In this case, we can enumerate the simple lassos symbolically rep-
resented by ϕstem∧ϕloop (i.e. lassos without disjunctions), and attempt to build
a termination argument for each of them. We do this using the algorithm pre-
sented in [36], a technique for enumerating an overapproximation of the prime
implicants of a formula by exploiting SMT solving under assumptions. Each im-
plicant of ϕstem ∧ ϕloop corresponds to a simple lasso, for which we try to build
a termination argument with the technique of [30]. In case of success, we use
the ranking function r(X) and its lower bound b produced by [30] to generate a
well-founded relation. If this relation was not in the set W already, we add it to
W , add its atomic predicates to P , stop the enumeration of simple lassos, and
refine the encoding, proceeding to checking the new invariant property on the
refined system.4 Otherwise, we continue with the enumeration, until we either
eventually find some new information that allows us to refine our encoding, or
we fail to build a termination argument for all the simple lassos represented by
the abstract counterexample. In the latter case, the algorithm is aborted, and
“unknown” is returned.

k-liveness as a well-founded relation. Generally, infinite-state systems ad-
mit counterexamples that are not lasso-shaped. But we analyze infeasibility of a
strict subset of all possible infinite unrollings of the abstract lasso. Consequently,
the refinement may fail to produce new abstraction predicates or well-founded
relations as well as fail to find a concrete counterexample. However, we may use
k-liveness to recover from such situations in hope to make further progress. By
extending the transition system with an auxiliary integer variable k representing
a counter of occurrences of f , and the necessary updates of k, the refinement may

always discover a new well-founded relation ρ(X,X)
def
= k < k ≤ n where k ∈ X

is introduced by the reduction αL2S↓ and n is an arbitrary positive integer. We
usually let n be the number of occurrences of f in the current counterexample.
By adding these free relations we allow the procedure to progress by blocking all
short spurious counterexamples as w holds for the first n steps of the re-encoded
system. Notice that this is sound.

4.3 Implementation within IC3ia

In principle, the technique described in the previous Sections can be implemented
on top of any off-the-shelf invariant verification algorithm. In practice, however,
we exploit the features of the IC3ia algorithm of [14] to obtain an efficient

4 An alternative heuristic could be to not stop the enumeration, and instead generate
well-founded relations covering all simple lassos represented by the abstract coun-
terexample. We use a conservative/lazy heuristic, that tries to avoid the potentially-
expensive exhaustive enumeration of implicants as much as possible.



implementation, in which our liveness-to-safety encoding is tightly integrated in
the incremental IC3-based invariant checking procedure and its interpolation-
based abstraction refinement.

First, we observe that the interpolation-based refinement of the αL2S encod-
ing (see §4.1) is very similar to the refinement procedure already implemented in
IC3ia, making it possible to reuse most of the code. More importantly, our tech-
nique can be integrated in IC3ia in a highly incremental manner. In particular,
there is no need of restarting from scratch the IC3 search at every refinement
iteration; rather, all the relatively-inductive formulas discovered by IC3ia in the
process of constructing an inductive invariant can be retained across refinements.
This is possible because:(a) our encoding only monotonically adds constraints
to the original transition system, and (b) the new safety property obtained after
the i + 1-th refinement step is weaker than the previous ones; in particular, if
IC3 has concluded that no state can violate the property corresponding to the
i-th refinement in k steps or less, then this is true also for the i+ 1-th property.
Therefore, all the invariants on which IC3 relies for its correctness are preserved
by our refinement procedure, thus allowing it to continue the search without
resetting its internal state.

5 Experimental Evaluation

We have implemented L2Sia-wfr as an extension of the IC3ia algorithm de-
scribed in [14]. The MathSAT SMT solver [17] is used for solving SMT queries,
computing interpolants, and synthesizing ranking functions (using the technique
of [30]). The LTL extension to IC3ia consists of about 1500 lines of C++ code.
In the evaluation, in addition to L2Sia-wfr, we consider L2Sia, i.e. the variant
where well-founded relations are disabled. The source code of the implementa-
tion is available at https://es-static.fbk.eu/people/griggio/ic3ia/.

Tools used. We compare our implementation with the following state-of-the-art
tools for temporal property verification of infinite-state systems:

HSF [29], a solver for Horn-like clauses that also supports proving well-founded-
ness of a given relation, using transition invariants. In order to check an LTL
property ϕ, we apply the technique described in [39]: we encode the input tran-
sition system and a (symbolic representation of a) Büchi automaton for ¬ϕ as
Horn-like clauses, and ask HSF to find a (disjunctively) well-founded transition
invariant showing that the accepting states of the automaton cannot be visited
infinitely often. We use the ltl2ba tool of [26] to generate the Büchi automaton.

T2-CTL* [21], an extension to the T2 termination prover for imperative pro-
grams supporting CTL* temporal properties. LTL properties can be verified by
simply checking the equivalent CTL* specification.5 T2-CTL* works by recur-
sively computing preconditions of subformulas of the input property (starting

5 T2 supports also verification of CTL properties under fairness constraints [20], which
could in principle be used for verifying LTL properties. Here we use the CTL* mode
as suggested by the tool authors.
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L2Sia-wfr
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T2-CTL*
Ultimate-LTL
L2Sia

Cumulative
Tool # Solved Safe Unsafe ∆L2Sia-wfr Gained Lost time (sec)

L2Sia-wfr 374 341 33 – – – 29438

L2Sia 344 320 24 -30 1 31 22144
Ultimate-LTL 56 56 0 -318 0 318 2113
HSF 21 21 0 -353 0 353 8116
T2-CTL* 0 0 0 -374 0 374 0

Fig. 1. Experimental results on symbolic transition systems.

from the leaves), and checking whether the precondition of the topmost formula
is satisfied by the initial states of the program. Path subformulas are approxi-
mated in ACTL, the program is partially determinized using prophecy variables
to reduce the imprecision of the approximation. Formula preconditions are then
computed via CTL model checking. We remark that T2-CTL* is more general
than L2Sia-wfr, being able to handle arbitrary CTL* properties. This fact
should be considered when interpreting the experimental results presented.

Ultimate-LTL [24], a tool for the verification of LTL properties of sequential
C programs. Ultimate-LTL works by enumerating the fair paths of the input
program (i.e. paths visiting the accepting condition of a Büchi automaton for ¬ϕ
infinitely often) and trying to prove each of them unfeasible (either by refuting
a finite prefix of the path, or by finding a suitable termination argument for
it). If a fair path is determined to be feasible, the property is shown not to
hold. Otherwise, if the fair path is successfully refuted, it is generalized and then
subtracted from the input program: if the result is empty, then the property is
shown to hold. Otherwise, an unknown result is reported.

Benchmark sets. Our benchmark set consists of 835 LTL verification problems,
grouped in three different subsets:

Symbolic transition systems. The first set consists of a collection of symbolic
transition systems: BIP models from [7], and systems derived from standard
examples in the real-time domain (e.g. [5, 1, 27]) in which the variables have been
converted to integers, in order to be able to use all the tools mentioned above.
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L2Sia-wfr
HSF
T2-CTL*
Ultimate-LTL
L2Sia

Cumulative
Tool # Solved Safe Unsafe ∆L2Sia-wfr Gained Lost time (sec)

L2Sia-wfr 76 54 22 – – – 618

Ultimate-LTL 61 44 17 -15 2 17 1512
L2Sia 41 26 15 -35 0 35 104
T2-CTL* 36 36 0 -40 2 42 663
HSF 24 24 0 -52 0 52 951

Fig. 2. Experimental results on imperative programs.

ok := f a l s e
∀xi∈X xi := nondet ( )
ok := t rue
i f ¬I(X)

ok := f a l s e
wh i l e ok

ok := f a l s e
∀xi∈X oldxi := xi
∀xi∈X xi := nondet ( )
ok := t rue
i f ¬T (oldX,X)

ok := f a l s e

The LTL properties have been manually gener-
ated, in order to capture standard liveness re-
quirements on the considered domains. The set
consists of 556 instances, 66 of which are un-
safe. For tools working with imperative programs
(T2-CTL*, Ultimate-LTL), we encode a sys-
tem S = 〈X, I, T 〉 as shown in the box on the
right, where nondet is a function that returns
a non-deterministic value. We then translate an
LTL property FG¬f into FG(ok → ¬f). 6

Imperative-style programs. This set consists of 86 imperative-style programs
collected from three different sources:

i) 17 simple hand-crafted imperative programs with LTL properties that were
specifically written to make approaches based on αL2S fail. The instances are
all safe.

ii) the 41 C programs belonging to the “coolant” and “decision-predicates”
groups of benchmark instances used in [24]. The programs have been translated
to transition systems using the C front-end of the Kratos [13] software model
checker.7

6 The encoding shown is a slightly simplified one. In practice, we have experimented
with several variations, and picked for each tool the encoding giving the best results.

7 The benchmark set from [24] contains also a third group of instances (“rers2012”),
which could however not be handled by the C front-end of Kratos.
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HSF
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Ultimate-LTL
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Cumulative
Tool # Solved Safe Unsafe ∆L2Sia-wfr Gained Lost time (sec)

L2Sia-wfr 152 82 70 – – – 956

Ultimate-LTL 146 85 61 -6 15 21 3311
T2-CTL* 80 80 0 -72 6 78 638
L2Sia 74 18 56 -78 1 79 57
HSF 52 52 0 -100 1 101 442

T2-termination 191 89 102 +39 40 1 235

Fig. 3. Experimental results on T2 termination benchmarks.

iii) the 28 instances of the “cav13-ctl-examples” in the source distribution of
T2, in which the LTL properties have been obtained by simply removing the
path quantifiers from the corresponding CTL properties in the original files.

T2 termination benchmarks. The last set we considered consists of the 193
instances of the “testsuite” group in the source distribution of T2. These are
termination problems that have been encoded into LTL by checking that a dis-
tinguished “sink” location is eventually reached. For this group of benchmarks,
in addition to the tools described above, we compare also with the specialised
procedure for termination checking in T2 [11] (called T2-termination in the
following).

Results. We ran our experimental evaluation on a cluster of machines with
2.67GHz Xeon X5650 CPUs and 96Gb of RAM, running Scientific Linux 6.7.
We used a timeout of 1200 seconds and a memory limit of 6Gb.

As a preliminary remark, we analyze the number of predicates used. For
the verification of the benchmarks, L2Sia-wfr discovered up to 85 predicates
for the αL2S↓ encoding and up to 278 predicates for checking the sequence of
invariant properties with IC3ia, with an average of 20 predicates for αL2S↓ and
45 predicates for IC3ia (with median values of 14 and 34 respectively). These
numbers do not include Boolean state variables in the system, that are always
tracked precisely. We conclude that Implicit Abstraction is a key enabler for
the proposed approach: an eager computation of the abstract transition system,
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Fig. 4. Experimental results on all benchmarks.

based for example on AllSMT [33], is typically unable to deal with such high
numbers of predicates.

The results of the evaluation are summarized in Figures 1–4. The plots show,
for each tool, the number of solved instances (y-axis) in the given total execution
time (x-axis), not including timeouts/unknowns. More information is provided
in the tables under the plots, where for each tool we show the number of solved
instances (distinguishing also between safe and unsafe ones), the difference in
number of solved instances wrt. L2Sia-wfr, the number of instances gained
(i.e. solved by the given tool but not by L2Sia-wfr) and lost, and the total
execution time taken on solved instances. From the results, we can make the
following observations:

i) L2Sia-wfr significantly outperforms all the other tools on symbolic tran-
sition systems (Fig. 1). Most of the instances are solved without the need of any
ranking function, relying exclusively on abstract L2S. However, as can be seen
from the comparison with L2Sia, the integration of ranking functions gives a
non-negligible benefit, allowing to solve 31 instances that were out of reach be-
fore, and only losing one. It is also interesting to observe that this is beneficial not
only for proving properties, but also for finding counterexamples. We attribute
the performance of L2Sia-wfr to its tight integration with the engine based on
IC3 with Implicit Abstraction [14], that can handle very efficiently the symbolic
encodings of these benchmarks. In contrast, and as expected, tools that are opti-
mized to exploit control-flow graphs of programs (T2-CTL*, Ultimate-LTL)
perform very poorly when such information is not available.



ii) Interestingly, as shown in Fig. 2 L2Sia-wfr is the best performing tool
also on the benchmarks of the imperative programs group, for which a control-
flow graph is available. The gap with the other tools in this case is much smaller,
and there are a number of instances which L2Sia-wfr cannot solve but some of
the other tools can. However, L2Sia-wfr is still the most effective tool overall,
both for safe and for unsafe instances.8 For this set of benchmarks, the integra-
tion of ranking functions is crucial for performance.

iii) The results on termination benchmarks (Fig. 3) show that there is still
a significant gap between tools supporting arbitrary LTL properties and spe-
cialised procedures for termination such as T2-termination, for which almost
all these instances are very easy. Also in this case, however, L2Sia-wfr is very
competitive with other tools of similar expressiveness (HSF and Ultimate-
LTL).

iv) Overall (Fig. 4), L2Sia-wfr performs very well across all the categories
of benchmarks we have considered, comparing very favorably with the state of
the art. We think that this demonstrates the generality and potential of our
approach.

6 Conclusions

In this paper we presented a novel algorithm, called L2Sia-wfr, to check liveness
properties on infinite state transition systems. The algorithm combines liveness-
to-safety with implicit abstraction and well-founded relations. The implemen-
tation demonstrates substantial advantages in performance over other temporal
checkers for infinite-state systems.

In the future, we will explore techniques for non-termination to find coun-
terexamples that are not lasso-shaped, thus extending the effectiveness of the
algorithm in the case of property violation. Furthermore, we will investigate
domain-specific techniques for the analysis of real-time/hybrid systems, such as
the integration with k-zeno [15], and the extension of the class of well-founded
relations over the reals. Finally, we will evaluate the application of L2Sia-wfr
to temporal satisfiability of first-order temporal logic.
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