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Abstract. NUXMV is a well-known symbolic model checker, which implements
various state-of-the-art algorithms for the analysis of finite- and infinite-state tran-
sition systems and temporal logics. In this paper, we present a new version that
supports timed systems and logics over continuous super-dense semantics. The
system specification was extended with clocks to constrain the timed evolution.
The support for temporal properties has been expanded to include MTL0,∞ for-
mulas with parametric intervals. The analysis is performed via a reduction to
verification problems in the discrete-time case. The internal representation of
traces has been extended to go beyond the lasso-shaped form, to take into account
the possible divergence of clocks. We evaluated the new features by comparing
NUXMV with other verification tools for timed automata and MTL0,∞, consid-
ering different benchmarks from the literature. The results show that NUXMV is
competitive with and in many cases performs better than state-of-the-art tools,
especially on validity problems for MTL0,∞.

Introduction
NUXMV [1] is a symbolic model checker for the analysis of synchronous finite- and
infinite-state transition systems. For the finite-state case, NUXMV features strong ver-
ification engines based on state-of-the-art SAT-based algorithms. For the infinite-state
case, NUXMV features SMT-based verification techniques, implemented through a tight
integration with the MATHSAT5 solver [2]. NUXMV has taken part to recent editions
of the hardware model checking competition, where it has shown to be very compet-
itive with the state-of-the-art. NUXMV also compares well with other model checkers
for infinite-state systems. Moreover, it has been successfully used in several applica-
tion domains both in research and industrial settings. It is currently the core verification
engine for many other tools (also industrial ones) for requirements analysis, contract
based design, model checking of hybrid systems, safety assessment, and software model
checking.

NUXMV is under continuous development, and various new functionalities have
been added over the years since [1]. The most noticeable are: i) support for uninterpreted
functions and unbounded arrays; ii) support for non-linear dynamics and transcendental
functions [3]; iii) integrated several advanced model checking algorithms (e.g. [3,4,5]).

In this paper, we put emphasis on the novel extensions to NUXMV to support timed
synchronous transition systems, which extend symbolically-represented infinite-state
transition systems with clocks. The main novelties of this new version are the follow-
ing. The NUXMV input language was extended to enable the description of symbolic



nuXmv

AIGERSBMC

Finite LS Traces

MiniSAT+ITPCUDD

Boolean Engines

MSATIC3MathSAT

SMT Engines

TypeCheckSymbTab UtilitiesUIFlattener

Advanced Model Checking Algorithms

Common Infrastrucure

SBMC K−Ind K−Ind IA

Finite LS Traces Infinite LS Traces

SBMC

MTLSTTS2STS

Finite Domain Infinite Domain Timed Domain

IC3 k−L

ITPIC3

CEGAR IC3 k−LL2S

IC3

L2S

IC3 IA

L2S

ITP

IC3 k−L

Fig. 1. The high level architecture of NUXMV.

synchronous timed transition systems with super-dense time semantics (where signals
can have a sequence of values at any real time t). The support for temporal properties
has been expanded to include MTL0,∞ formulas with parametric intervals [6,7]. There-
fore, NUXMV now supports model checking of invariant, LTL and MTL0,∞ properties
over (symbolic) timed transition systems, as well as validity/satisfiability checking of
LTL and MTL0,∞ formulas. This is done via a correct and complete reduction to ver-
ification problems in the discrete-time case (thus allowing for the use of mature and
efficient verification engines). In order to represent and find infinite traces where clocks
may diverge, we extended the representation for lasso-shape traces (over discrete se-
mantics) and we modified the bounded model checking algorithm to properly encode
timed traces. We remark that, NUXMV is more expressive than timed automata, since
the native management of time is added on top of an infinite state transition system.
This makes it straightforward to encode stopwatches and comparison between clocks.
We carried out an experimental evaluation comparing NUXMV with other state-of-the-
art verification tools for timed automata, considering different benchmarks taken from
competitor tools distributions.

Software Architecture
The high level architecture of NUXMV is depicted in Fig. 1. For symbolic transition
systems NUXMV behaves like the previous version of the system [1], thus allowing
for full backward compatibility (apart from some new reserved keywords). It provides
the user with all the basic model checking algorithms for finite domains both using
BDDs (using CUDD [8]) and SAT (e.g. MINISAT [9]). It supports various SMT-based
model checking algorithms (implemented through a tight integration with the MATH-
SAT5 solver [2]) for the analysis of finite and infinite state systems (e.g. IC3 [10,11,12],
k-liveness [13], liveness to safety [14]). We refer the reader to [1] for a thorough dis-
cussion of these consolidated functionalities for the discrete-time setting.
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1 @TIME DOMAIN continuous −− annota t ion to spec i f y the t ime semantics , i n t h i s case dense t ime
2
3 MODULE main
4 FROZENVAR p : rea l ; INIT p > 0 −− parameter
5 VAR i : rea l ; −− i npu t o f the sensor
6 VAR s : Sensor ( i ) ;
7 VAR m: Moni tor ( s . o , p ) ;
8
9 LTLSPEC G ( s . f a u l t −> F [ 0 , p ] m. alarm ) −− any f a u l t i s detected i n p timed u n i t s

10
11 MODULE Sensor ( i )
12 VAR o : rea l ;
13 VAR f a u l t : boolean ;
14 TRANS ! f a u l t −> next ( o ) = i −− i f not f a u l t y , the sensor prov ides i n output d i r e c t l y the i npu t
15 TRANS f a u l t −> next ( o ) = o −− i f f a u l t y , the sensor output i s s tuck a t the l a s t value
16 TRANS f a u l t −> next ( f a u l t ) −− the f a u l t i s permanent
17
18 MODULE Moni tor ( i , p )
19 VAR prev ious va lue : rea l ;
20 VAR c : clock ;
21 VAR alarm : boolean ;
22 INIT c=0 & prev ious va lue = i & ! alarm
23 INVAR TRUE−> c <= p
24 TRANS t ime <= p | t ime >= p
25 TRANS ( c = p & next ( c ) = 0 & next ( p rev ious va lue ) = i ) | −− the moni tor reads the sensor every p t ime u n i t s
26 ( c <= p & next ( c ) = c & next ( p rev ious va lue ) = prev ious va lue )
27 TRANS next ( alarm ) <−> ( alarm | i =p rev ious va lue ) −− alarm ra ised when the same value read tw ice consecu t i ve l y

Fig. 2. A simple TIMED-NUXMV program.

To support the specification and model checking of invariant, LTL and MTL0,∞
properties for timed transitions systems, and for the validity checking of properties over
dense time semantics, NUXMV has been extended w.r.t. [1] as discussed here after.

– We extended the parser to allow the user to choose the time semantics to use for the
read model. Depending on the time model some parse constructs and checks are
enabled and/or disabled. For instance, variables of type clock and MTL0,∞ proper-
ties are only allowed if the dense time semantics has been specified. By default the
system uses the discrete time semantics of the original NUXMV. Notice also that,
depending on the specified semantics, the commands available to the user change
to allow only the analyses supported for the chosen semantics.

– We extended the parser to support the specification of symbolic timed automata
(definition of clock variables, specification of urgent transitions and state invariants,
etc.). Moreover, we extended the parser to allow for the specification of MTL0,∞
properties, and we extended the LTL bounded operators not only to contain con-
stants, but also complex expressions over clock variables. See Fig. 2 for a simple
example showing some of the new language constructs.

– We extended the symbol table to support the specification of clock variables, and we
extended the type checker to properly handle the new defined variables, expression
types and language constructs.

– We added new modules for the encoding of the symbolic timed automata into equiv-
alent transition systems to verify with the existing algorithms of NUXMV.

– We extended the traces for NUXMV to support timed traces (lasso-shaped traces
where some clock variables may diverge).

– We modified the encoding for the loops in the bounded model checking algorithms
to take into account that traces may contain diverging variables to allow for the
verification and validation of LTL and MTL0,∞ properties.

We remark that, the above extensions have been complemented with several additional
new functionalities since [1]. The most noticeable are: i) the support for uninterpreted
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functions and unbounded arrays; ii) the support for non-linear dynamics and transcen-
dental functions [3]; iii) the integration of several advanced symbolic model checking
algorithms for infinite state systems [3,4,5].

For portability, NUXMV has been developed mainly in standard C with some new
parts in standard C++. It compiles and executes on Linux, MS Windows, and MacOS.

Language Extensions
Timed Transition Systems Discrete-time transition systems are described in NUXMV
by a set V of variables, an initial condition I(V ), a transition condition T (V, V ′) and an
invariant condition Z(V ). Variables are introduced with the keyword VAR and can have
type Boolean, scalar, integer, real or array. The initial and the invariant conditions are
introduced with the keyword INIT and INVAR and are expressions over the variables in
V . The transition condition is introduced with TRANS and is an expression over variables
in V and V ′, where for each variable in V , V ′ contains the “next” version denoted in the
language by next(v). Expressions may use standard symbols in the theory associated
to the variable types and user-defined rigid functions that are declared with the keyword
FUN.

The input language of NUXMV has been extended to allow the specification of
timed transition systems (TTS), which are enabled by the annotation @TIME DOMAIN

continuous at the beginning of a model description.
Besides the standard types, in the timed case, state variables can be declared of type

clock. All variables of type different from clock are discrete variables.
The language provides a built-in clock variable, accessible through the reserved

keyword time. It represents the amount of time elapsed from the initial state until now.
time is initialized to 0 and its value does not change in discrete transitions. While all
other clock variables can be used in any expression in the model definition, time can
be used only in comparison with constants.

Initial, transition, and invariant conditions are specified in NUXMV with the key-
words INIT, TRANS, and INVAR, as in the discrete case. In particular, TRANS allows to
specify ”arbitrary” clock resets. Like all other NUXMV state variables, if a clock is not
constrained during a discrete transition, its next value is chosen non-deterministically.

Clock variables can be used in INVAR only in the form ϕ → φ, where ϕ is a for-
mula built using only the discrete variables and φ is convex over the clock variables.
This closely maps the concept of location invariant described for timed automata: all
locations satisfying ϕ have invariant φ.

An additional constraint, not allowed in the discrete-time case, is introduced with
the keyword URGENT followed by a predicate over the discrete variables, which allows
to specify a set of locations in which time cannot elapse.

Comparison with Timed Automata Timed automata can be represented by TTSs by
simply introducing a variable representing the locations of the automaton. Note that,
in TTS, it is possible to express any kind of constraint over clock variables in discrete
transitions, while in timed automata it is only possible to reset them to 0 in transi-
tions or compare them to constants in guards. Moreover, the discrete variables of a
timed automaton always have finite domain, while in TTSs, also the discrete variables
might have an infinite domain. This additional expressiveness allows to describe more
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complex behaviors (e.g. it is straightforward to encode stopwatches and comparison
between clocks) losing the decidability of the model checking problem.

Specifications NUXMV’s support for LTL has been extended to allow for the use of
MTL0,∞ operators [15] and other operators such as event-freezing functions [16] and
dense version of LTL X and Y operators. MTL0,∞ bounded operators extend the LTL
ones of NUXMV to allow for bounds either of the form [c,∞), where c is a constant
greater or equal to 0, e.g. F[0,+oo) ϕ, or generic expressions over parametric/frozen
variables: e.g. F [0, 3+v] ϕ where v is a frozen variable.

In timed setting, next and previous operators come in two possible versions. The
standard LTL operators X and Y require to have, respectively after and before, a dis-
crete transition. Dually, X˜ and Y˜ have been introduced to allow to predicate about the
evolution over time of the system. They are always FALSE in discrete steps and hold
in time elapses if the argument holds in the open interval immediately after/before the
current step. The disjunction of these operators X(ϕ) ∨ X̃(ϕ) allows to check if the
argument ϕ holds after the current state without distinction between time or discrete
evolution.

The event-freezing operators at next and at last, written @F̃ and @Õ, are binary
operators allowed in LTL specifications. The left-hand side is a term, while the right-
hand side is a temporal formula. They return the value of the term respectively at the
next and at the last point in time in which the formula is true. If the formula will [has]
never happen [happened] the operator evaluates to a default value.

time until and time since are two additional unary operators that can be used
in LTL specifications of timed models. Their argument must be a Boolean predicate
over current and next variables. time until(ϕ) evaluates to the amount of time elapse
required to reach the next state in which ϕ holds, while time since(ϕ) evaluates to the
amount of time elapsed from the last state in which ϕ held. As for the @F̃ and @Õ
operators if no such state exists they are assigned to a default value.

Extending Traces
Timed Traces The semantics of NUXMV has been extended to take into account the
timing aspects in case of super-dense time. While in the discrete time case, the ex-
ecution trace is given by a sequence of states connected by discrete transitions (i.e.,
satisfying the transition condition), in the super-dense time case the execution trace is
such that every pair of consecutive states is a discrete or a timed transition. As in the
discrete case, discrete transitions are pair of states satisfying the transition condition.
As in timed automata, in a timed transition time elapses for a certain amount (referred
to as delta time), clocks increase of the same amount, while discrete variables do not
change.

Lasso-shaped traces with diverging variables Traditionally, the only infinite paths
supported by NUXMV have been those in lasso shape, i.e. those traces which can be
represented by a finite prefix s0, s1, . . . , sl (called the stem) followed by a finite suffix
sl+1, . . . , sk ≡ sl (called the loop), which can be repeated infinitely many times. While
this representation is sufficient for finite-state systems (because in a finite-state setting if
a system does not satisfy an LTL property, then a lasso-shaped counter-example trace
is guaranteed to exist), this is an important limitation in an infinite-state context, in
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which lasso-shaped counter-examples are not guaranteed to exist. (As a simple example,
consider a system M := 〈{x}, (x = 0), (x′ = x + 1)〉 in which x ∈ Z. Then M 6|=
GF(x = 0), but clearlyM has no lasso-shaped trace.) In fact, this is especially relevant
for timed transition systems, which, by the presence of the always-diverging variable
time, admit no lasso-shaped trace.

In order to overcome this limitation, we introduce a new kind of infinite traces,
which we call lasso-shape traces with diverging variables (to allow also for represent-
ing traces with variables whose value might be diverging). We modified the bounded
model checking algorithms to leverage on this new representation to then extend the
capabilities to find witnesses for a given property. This representation significantly ex-
tends the capabilities of NUXMV to find witnesses for violated LTL and MTL proper-
ties on timed transition systems (see experimental evaluation).

Definition 1 Let π := s0, s1, . . . , sl, . . . be an infinite trace of a system M over vari-
ables V . We say that π is a lasso-shaped trace with diverging variables iff there exist
indexes 0 ≤ l ≤ k, a partitioning of V into sets X and Y (V = X ] Y ) and an
expression fy(V ) over V for every variable y ∈ Y such that, for every i > k,

si(v) :=

{
sl+((i−l) mod (k−l))(v) if v ∈ X (like in lasso-shaped traces)
fv(si−1) if v ∈ Y (as function of previous state)

Intuitively, the idea of lasso-shaped traces with diverging variables is to provide a fi-
nite representation for infinite traces that is more general then simple lasso-shaped ones,
and which allows to capture more interesting behaviors of timed transition systems.

Example 1. Consider the system M := 〈{y, b},¬b ∧ y = 0, (b′ = ¬b) ∧ (b → y′ =
y+1)∧(¬b→ y′ = y)〉. Then one lasso-shaped trace forM is given by: π := s0, s1, s2,
where s0 := {b 7→ ⊥, y 7→ 0}, s1 := {b 7→ >, y 7→ 0}, and s2 := {b 7→ ⊥, y 7→ 1};
the trace is lasso-shaped with diverging variables considering Y := {y}; the loop-back
at index 0, and fy(b, y) := b ? y + 1 : y.

Extended BMC for Traces with Divergent Clocks The definition above requires the
existence of the functions fy for computing the updates of diverging variables. In case
y is a clock variable, we can define a region JφyK in which y can diverge (i.e., fy = y+δ,
where δ is the delta time variable).

In order to capture lasso-shaped traces with diverging variables, we can modify
the BMC encoding as follows. Let

∨k
l=0(

∧
v∈X]Y (v

l = vk) ∧ lJϕK0k) be the formula
representing the BMC encoding of [17] at depth k with all possible loop-backs 0 ≤ l ≤
k for a given formula ϕ. The encoding is extended as follows:

k∨
l=0

(( ∧
x∈X

(xl = xk) ∧
∧
y∈Y

(yl = yk ∨
k∧

i=l

JφyKi)

)
∧ lJϕK0k

)
The correctness of the encoding relies on a safe choice of the set Y , falling back to

the incomplete lasso-shaped case when some syntactic restrictions on the expressions
containing clocks are not met (see Supplemental Material for more details).
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Fig. 3. Runtime for the Fisher mutual exclusion problem; x-axis: number of processes, y-axis:
time (s). LTL-1 and MTL-1 properties are the bounded version of resp. LTL-0 and MTL-0.

Related Work
There are many tools that allow for the specification and verification of infinite state
symbolic synchronous transition systems. Given the focus of this paper, here we restrict
our attention to tools supporting timed systems and/or MTL properties.

Uppaal [18], the reference tool for timed systems verification, supports only
bounded variable types and therefore finite asynchronous TTS. Properties are limited
to a subset of the branching-time logic TCTL [19,20]. LTSmin [21] and Divine [22] are
two model checkers that support the Uppaal specification language and properties spec-
ified in LTL. RTD-Finder [23] handles only safety properties for real-time component-
based systems specified in RT-BIP. The verification is based on a compositional compu-
tation of an invariant over-approximating the set of reachable states of the system and
leverages on counterexample-based invariant refinement algorithm. The ZOT Bounded
Model/Satisfiability Checker [24] supports different logic languages through a multi-
layered approach based on LTL with past operators. Similarly to NUXMV, ZOT sup-
ports dense-time MTL. It leverages only on SMT-based Bounded Model Checking,
and is therefore unable to prove that properties hold. ATMOC [25] implements an ex-
tension of IC3 [10] and K-induction [26] to deal with symbolic timed transition sys-
tems. It supports both invariant and MTL0,∞ properties, although for the latter it only
supports bounded model checking. CTAV [27] reduces the model checking problem
for an MTL0,∞ property ϕ to a symbolic language emptiness check of a timed Büchi
automata for ϕ.

Differently from all the above tools NUXMV is able to prove MTL0,∞ properties
on timed transition systems with infinite domain variables

Experimental Evaluation
We compared NUXMV with ATMOC [25], CTAV [27], ZOT [24], Divine [22],
LTSmin [21], and Uppaal [28].
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For the evaluation we considered i) scalable benchmarks taken from competitor
tools distributions and from the literature; ii) handcrafted benchmarks to stress various
language features. In particular, we considered different versions of the Fisher mutual
exclusion protocol (correct and buggy) with different properties, different versions of
the emergency diesel generator problem (previously studied with ATMOC [25]). Finally
we considered also the validity checks of some MTL properties also taken from [25].
We run all the experiments on a PC equipped with a 3.7GHz Xeon quad core CPU and
16Gb of RAM, using a time/memory limit of 1000sec/10Gb for each test.

102100
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Fig. 4. Result for the runtime (s)
for the diesel generator problem.

The results of the evaluation are reported in Fig. 3
for the Fisher family of experiments, and in Fig. 4
for the emergency diesel generator family of problems
(CTAV does not appear in the plot of MTL-0 because it
wrongly reports a counterexample although MTL-0 is
the bounded version of LTL-0). While the results for the
validity check of pure MTL properties are reported in
Fig. 5 In the plots NUXMV refers to runtime for the IC3
with implicit abstraction in lockstep with BMC with the
modified loop condition algorithm, and NUXMV-bmc
refers to runtime for BMC alone with the modified loop
condition algorithm. The results show that NUXMV is
competitive with and in many cases performs better than other state-of-the-art tools,
especially on validity problems for MTL0,∞.
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Fig. 5. Runtime (s) for the validity checks of MTL properties.

Conclusions
We presented the new version of NUXMV, a state-of-the art symbolic model checker for
finite and infinite-state transition systems, that we extended to allow for the specification
of synchronous timed transition systems and of MTL0,∞ properties. To support the new
features, we extended the NUXMV language, we allowed for the specification MTL0,∞
formulas with parametric intervals, we adapted the model checking algorithms to find
for lasso-shaped traces (over discrete semantics) where clocks may diverge. We eval-
uated the new features comparing NUXMV with other verification tools for timed au-
tomata, considering different benchmarks. The results show that NUXMV is competitive
with and in many cases performs better than state-of-the-art tools, especially on validity
problems for MTL0,∞.
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