Delayed Theory Combination vs. Nelson-Oppen for
Satisfiability Modulo Theories: a Comparative Analysis'

Roberto BruttomesgpAlessandro Cimattj Anders Franzéf?,
Alberto Griggi?, and Roberto Sebastigni

1 ITC-IRST, Povo, Trento, Italy{bruttonesso, cimatti,franzen}@tc.it
2 DIT, Universita di Trento, Italy.{gri ggi o, rseba}@it.unitn.it

Abstract. Many approaches for Satisfiability Modulo TheoSMT(‘T)) rely on
the integration between a SAT solver and a decision proeefiursets of liter-
als in the background theory (7 -solver. WhenT is the combinatiorty U 72

of two simpler theories, the approach is typically handlgchieans of Nelson-
Oppen’s (NO) theory combination schema in which two spedfisolversde-
duce and exchange (disjunctions of) interface equalities.

In recent papers we have proposed a new approa8ivitf 73 U %), calledDe-
layed Theory Combinatio(DTC). Here part or all the (possibly very expensive)
task of deducing interface equalities is played by the SAVesatself, at the
potential cost of an enlargement of the boolean search spageinciple this
enlargement could be up to exponential in the number offaxterequalities gen-
erated.

In this paper we show that this estimate was too pessimisticpresent a com-
parative analysis of Dc vs. NO forSMT(71 UZ»), which shows that, using state-
of-the-art SAT-solving techniques, the amount of boole@mbhes performed by
DTcC can be upper bounded by the number of deductions and booteanhes
performed by NO on the same problem. We prove the result feerdint deduc-
tion capabilities of theZ'-solversand for both convex and non-convex theories.

1 Introduction

Satisfiability Modulo a Theory” (SMT(T)) is the problem of checking the satisfiability
of a quantifier-free (or ground) first-order formula with pest to a given first-order
theoryZ. Theories of interest for many applications are, e.g., tie®ty of difference
logic DL, the theoryEUF of equality and uninterpreted functions, the quantifieefr
fragment of Linear Arithmetic over the rationals4(Q) and that over the integers
LA(Z). Particularly relevant is the case SMT(‘7; UZ2), where the background theory
T is the combination of two (or more) simpler theori&sand 7. 3

* This work has been partly supported by ISAAC, an Europeansped project, contract no.
AST3-CT-2003-501848, by ORCHID, a project sponsored byiRoia Autonoma di Trento,
and by a grant from Intel Corporation.

3 For better readability, and as it is common practice in paplealing with combination of the-
ories, in this paper we always deal with only two theorigendZ,. The discourse generalizes
to more than two theories.

A prominent approach t8MT(Z') which underlies several systems (e.g., CMCt
[2], DLSAT [8], DPLL(T)/BarceLogic[10], MATHSAT [4], TSAT++ [1], ICS/YICES
[9]), is based on extensions of SAT technology: a SAT engimaadified to enumerate
boolean assignments, and integrated with a decision puoedadr sets of literals in the
theory 7' (T-solve). The above schema is also followed to tackle $MT(7; U Z;)
problem. The approach relies on a decision procedure allediole the satisfiability of
sets of literals inZ; U 7, that is typically based on an integration schema like Nelso
Oppen (NO) [11] (or its variant due to Shostak [13]): thesolversare combined by
means of a structured exchange of (disjunctions of) interqualitiesd;’s).

Unfortunately from a practical point of view this schema g®some challenges.
First, the integration between the tvi-solvers is not trivial to implement. Second,
the ability of Zi-solvers of inferring (disjunctions of) interface equigl#t (hereafteg;-
deduction completengsequired by NO is neither always easy to achieve nor always
cheap to perform. (E.ggj-deduction is cheap faE U F but can be very expensive for
LA(Z).) Third, in case of non-convex theories (e.g4(Z)), a backtrack search must
be used to take care of the disjunctions that need to be mdnage

In recent papers [3, 6] we have proposed a novel approaSMif{‘7; U 72), called
Delayed Theory CombinatigidTC). The main idea is to avoid the integration schema
between7; and7,, and tighten the connection between e&tland the SAT engine.
While the truth assignment is being constructed, it is cbddir consistency with re-
spect to each theory in isolation. This can be seen as catisguwo (possibly incon-
sistent) partial models for the original formula; the “miexgj’ of the two partial models
is enforced, on demand, since the solver is requested to fodnplete assignment to
theg;j’s.

Compared to the NO schema, this approach has several adeari8 6]. First, it is
easier to implement and analyze. Second, the approach dbesiyion the7Z;-solvers
beingej-deduction complete, although it can fully benefit from tiieperty. Third, the
DTc nicely encompasses the case of non-convex theories. Oretgagive side, in [3,
6] we noticed that these benefits are traded with a potentiatgement of the boolean
search space which, in principle, could be up to exponeintile number of interface
equalities generated. Thus, despite the positive empigesalts presented in [3, 6], the
latter fact represented, at least in theory, one possilalolack of Drc.

In this paper we show that this latter point was way too peissicn We present a
comparative analysis of T vs. NO forSMT(71 U T2), and we introduce some novel
theoretical results, for both convex and non-convex thesoasind for different deduction
capabilities of theZ-solvers. These results show that, by exploiting the fulvpoof
advanced SAT techniques like backjumping and learnirmy; Ban be implemented in
such a way as to mimic the behavior of NO, so that the amounbofean branches
required by Drc can be upper-bounded by the sum of the number of deductiahs an
branches required by NO in order to perform the same tasks.

From these results we have that®generalizes NO, in the sense that:

— under the same hypothesesgfdeduction-completeness of tigsolversrequired
by NO, Drc emulates NO with no extra cost in terms of boolean search;

— in the more general casdi{solverswith partial or nog;-deduction capabilities)
DTc can mimic the behavior of NO, in such a way that all or part & ¢pos-

sibly very expensivedij-deductions are substituted with only few extra boolean
branches.

We also notice that the capability of learning conflict clegisontaining interface equal-
ities, which is typical of Orc, allows for cutting branches corresponding to repeated
deductions in an equivalent NO schema.

The paper is structured as follows. In Section 2 we presemesoackground and
introduce the Nelson-Oppen combination schem&SdiT(7; U 72). DTC is then dis-
cussed in Section 3. We present our analysis in Sections érémhe case oj-
deduction completeness in tig-solvers of Drc is examined) and 5 (where thg-
solvers employed by ©c are assumed to have limited or no deduction capabilities).
Finally, in Section 6 we draw some conclusions.

For lack of space, the proofs of the theorems and a more détdéscription of the
algorithms are omitted here, and they are reported in amdgtktechnical report [7].

2 SMT for combined theories via Nelson-Oppen’s integration

2.1 Basic definitions and properties

Consider a theoryZ” with equality. 7 is stably-infiniteiff every quantifier-free7-
satisfiable formula is satisfiable in an infinite model@fNotice thatEUF, DL(Q),
DL(Z), LA(Q), LA(Z) are stably-infinite, whereas e.qg. theories of bit-vec®id are
typically not. In what follows, we shall assume to deal onighvstably-infinite theories
with equality and with disjoint signatures.

T is convexff, for every collectionly, ... Ik, €1,...,e, of literals in7 s.t.ey,. .., e,
are in the form(x =y), x,y being variables, we have that

n
{l1, ..k} Er V&< {l1,...I} = & forsome 1<i <n.
i—1

Notice thatZ U ¥, DL(Q), LA(Q) are convex, wherea® L(Z) and LA (Z) are not.

Consider two theoried1, 7> with equality and disjoint signatur@g,>,. An atom
Y isi-pure if only=, variables and symbols fro&) occur iny. A formula¢ is pure iff
every atom inp is i-pure for some € {1,2}. Every non-purel; U 7; formula$ can be
converted into an equivalently satisfiable pure formpllay recursively labeling terms
t with fresh variablest, and by adding the atoifw; =t). E.g.:

(F(x+3y) =9(2x—y)) = (f(Vxray) =9(Vaxy)) A (Vi 3y = X+3Y) A (Vaxy = 2X—Y).

This process is callepgurification and is linear in the size of the input formula. Thus,
henceforth we assume w.l.0.g. that all input formulas 71 U ‘7, are pure.

If ¢ is a pureZy U7, formula, thenv is aninterface variablefor ¢ iff it occurs in
both 1-pure and 2-pure atoms @f An equality(v; = v;) is aninterface equalityor ¢
iff vi, vj are interface variables f@r. We assume an unique representation(¥e= v;)
and(vj = v;). Henceforth we denote the interface equality= v;j) by “&;".

function Bool+7 (¢: quantifier-free formuln
1 4P —— T2B(Atomgd))

2 OP —— T2B(9)

3 while Bool-satisfiablé$P) do

4 WP —— pick total_assigr{-4P,$P)

5 (p,)«— T —satisfiabld B2T (uP))
6 if p=sat then return sat

7 WP — OP A T2B(-m)

8 end while

9 return unsat

end function

Fig. 1. A simplified view of enumeration-based T-satisfiability pedure:Bool+7

Given a7 -inconsistent set of literals = {I4,...,In} in a theory7, a conflict set
n is an (Z-)inconsistent subset df. n is minimal if none of its strict subsets i9 -
inconsistent. We say thatis —e;j-minimaliff n\ {—e;j } is no more7 -inconsistent, for
every—ej €.

A T-solveris a procedure that decides the consistency of an assignnmemt. An
(propositional) assignmenptfor a formulag is a functiory: Atomg¢) — {true, false}.
pLcan be equivalently represented as a set of litgrglevhere—A € psif Y(A) = false
and A € ps otherwise.u can also equivalently be seen as a formuja built as the
conjunction of the literals in the sgg. (In the following, we will denote all such equiv-
alent representations with Moreover, we will denote withu; the subassignment of
containing onlyi-pure literals.) When & -solverdetects the inconsistency pfit also
returns a conflict sef of . Finally, we also require every-solverinvolved in either
the NO schema or Dc to beincremental(it does not need to restart the computation
from scratch to decide the satisfiability gfif it had already proved that of C) and
backtrackabléit can return to a previous state in an efficient manner).[11]

We say that & -solveris —g;-minimal(resp.minima) if the conflict sets it returns
are always-g;j-minimal (resp. minimal). Notice thaig;j-minimality is a much weaker
requirement than minimality.

2.2 Satisfiability Modulo Theory

Fig. 1 present8ool+7, a (much simplified) decision procedure f8MT(7Z). The
functionAtomg¢) takes a ground formul@ and returns the set of atoms which occur
in . We use the notatioP to denote thepropositional abstractiorof ¢, which is
formed by the functioriZ 28 that maps propositional variables to themselves, ground
atoms into fresh propositional variables, and is homomiarpir.t. boolean operators
and set inclusion. The functio®27 is the inverse of728. We usepP to denote a
propositional assignment. (If238(y) = 7238(¢), then we say that propositionally
satisfiesd.) The idea underlying the algorithm is that the truth assignts for the
propositional abstraction df are enumerated and checked for satisfiabilityZinThe
procedure either returrsat if one such model is found, or returnssat otherwise. The

function pick_ total_assignreturns a total assignment to the propositional variabies i
¢P, that is, it assigns a truth value to all variablesdR. The function7 -satisfiablép)
detects if the set of conjunctsis 7 -satisfiable: if so, it returnssét, 0); otherwise, it
returns (insat, M), wherem C pis a‘7 -unsatisfiable set, calledtheory conflict setWe
call the negation of a conflict setcanflict clause

The algorithm is a coarse abstraction of the ones underlyBgT ++, MATHSAT,
DLSAT, DPLL(T)/BarceLogic, CVCLTE, and ICS/YICES. The test for satisfiabil-
ity and the extraction of the corresponding truth assignnaee kept separate in this
description only for the sake of simplicity.

In practice, the enumeration of truth assignments is cduoigt by means of effi-
cient implementations of the DPLL algorithm [15], wher@artial assignment Ruis
built incrementally, each time selecting an unassigneddit (literal selectior), called
decision litera) according to some heuristic criterion, adding it and performing
all the other assignments which derive deterministicalyrf this choice(nit propaga-
tion). When some assignment falsifies the formula returning a (boolean) conflict set
m°, or when7 -satisfiable327 (uP)) fails returning a theory conflict set the negation
—T° of (the boolean abstraction of) the conflict set is passedaamfiict clause to the
boolean solver. TherT is added in conjunction tdP either temporarily or perma-
nently (earning), and the algorithm backtracks up to the highest point instaarch
where a literal can be unit-propagated en® (backjumping. Learning also avoids
generating the same conflicts in future branches.

An important variant [10] is that of building fromT® a “mixed boolean+theory
conflict clause”, by recursively removing non-decisioaililsl from the conflict clause
by resolving the latter with the clausg which caused the unit-propagationlofthis
is done until the conflict clause contains only decisiorrdite (ast-UIP strategy or at
most one non-decision literal assigned after the last tec{@irst-UIP strategy.*

Another important improvement isarly pruning (EP) before every literal selec-
tion, intermediate assignments are checkedrfegatisfiability and, if notZ -satisfiable,
they are pruned (since no refinement canbaatisfiable). Finallytheory deduction
can be used to reduce the search space by allowing teelvers to explicitly return
truth values for unassigned literals, which can be unipppgated by the SAT solver.
The interested reader is pointed to, e.g., [1, 4, 10, 5] femitkeand further references.

2.3 Nelson-Oppen’s schema

Given two signature-disjoint stably infinite theorigsand‘Z;, the Nelson-Oppen com-
bination schema [11], in the following referred to as NOgaf for solving the satisfia-
bility problem for7; U 7; (i.e. the problem of checking th& U T>-satisfiability of sets
of Z; UZp-literals) by using the satisfiability procedures firand7,. The procedure is
basically a structured interchange of information infdrfieom either theory and prop-
agated to the other, until convergence is reached. The scheguires the exchange of
information, the kind of which depends on thenvexityof the involved theories. In
the case of convex theories, the two solvers communicatedio ether single interface

4 These are standard techniques implemented in most SATrsdtverder to build the boolean
conflict clauses [14].

RESE Branch1 Branch2 _‘RESE}

V3 = h Vo EUF LAQ) Vo> V1 V3 = h Vo EUF LAQ) Vo> Vi
vy = hivy Vo< Vg va=h(vy Vo <Vp
V5:fV2 Vo =V3—Vy V6:fV2 Vo =V3—Vy
V7:fV5 V5:O V7:fV5 Vg = Vg
—(Ve = V) (ej-deduction =(Ve= V1) (&-deduction

Vo = V1 {0 o=w Vo = V1 Vo=V1
(eij-deduction v v (ej-deduction

V3=Vy > 3= V4 V3 =V, > V3 =V,

(eij-deduction 3 4 3 4
Vo = Vg an Vo = Vs EUF U £4(Q)-Satisfiablel
i

Fig. 2. Representation of the search tree for the formula of Exarhple

equalities. In the case of non-convex theories, the NO sahieecomes more com-
plicated, because the two solvers need to exchanigigrary disjunctions of interface
equalities which have to be managed within the decision procedure lansef case
splitting and ofbacktracksearch. In the latter case, the NO schema performs a number
of branchego check the consistency of a set of literals which dependscan many
disjunctions of equalities are exchanged at each stepeittihrent set of literals ig,

and one of theZ-solver sends the disjunctidmﬁzl(aj)k to the other, the latter must
further investigate up ta branches to check the consistency of each ofttbe (e;j)}

sets separately.

Example 1 (convex cas&onsider the followingE U ¥ U LA(Q) formula (cf Fig. 2)

EUF : (va=h(vo)) A(va=h(v1)) A (Ve = F(v2)) A(vz = F(V5))A
L£A(Q): (vo>Vvi)A (Mo <V1)A(va=v3—Va) A(RESEFT— (vs =0))A (1)
Both: (-RESEF — (V5 =V3g)) A (Vg = V7).

Vo, V1, V2, V3, V4, Vs are interface variablesg, v7, vg are not. (Thus, e.g(yo = v1) is an
interface equality, whilsfvo = V) is not.)RESE¥'is a boolean variable.

After the first run of unit propagations, assume DPLL seldotsliteral RESET, re-
sulting in the assignment

H={ (va="h(w)), (va=h(v1)), (Ve = f(v2)),(v7 = f(Vs)), (Vo > V1), o)
(Vo < V1), (V2 = V3 —Va),~(Ve = v7),RESET, (V5 = 0)},

which propositionally satisfief. Now, the set of literalfiz ¢, C His givento theEUF
solver, which reports its consistency and deduces no neafae equality. Then the
setil, 4(g) C Mis given to the£ A(Q) solver, which reports consistency and deduces the
interface equality{vp = v1), which is passed to th€ U F solver. The new sgiz¢ ¢ U
{(vo=w1)} is still EUF -consistent, but this time thE U/ F solver deduces the equality
(v3=V4), whichis in turn passed to the4(Q) solver, that now as a consequence of this
and the assignment;, ;) deducegv, = vs). The EUF solver is then invoked again

to check theE U F -consistency of the assignmantq s U{(vo = V1), (V2 =Vs) }: since

this check fails, the Nelson-Oppen method reportsltéF U LA4(Q)-unsatisfiability

Heaz) Meas

vi>0 Vs=V4—1 ﬁgf v1§:f§v2§;

vi<1 v3=0 =(f(vp) = f(vs

Vo > Vg va=1 f\/33:V5

VZSV6+1 fVl =V
(gj-deduction

Vi =V3VV; =V T~
1=V3VVi=Vy Ej> Vi =5 Vo=V,
(ej-deduction EUF U LA(Z)-Satisfiable!
Vs = Vg ¢n Vs = Ve
(ej-deduction

Vo =V3V Vo=V |:>
Vo = V3 Vo =Vy

1 1

Fig. 3. Representation of the search tree for the formula of Exar2ple

of ¢ under the whole assignmept At this point, then, DPLL backtracks and tries
assigning false tRE SE§, resulting in the new assignment

H=1{ (va=h(w)), (va =h(v1)), (Ve = f(v2)), (V7
(V2 = V3 —V4),ﬂ(V6 = V7),—\RESEI, (5 =

vg))},
which is foundEUF U £LA4(Q)-satisfiable (see Fig. 2). O

Vs)), (Vo > V1), (Vo < V1),

Example 2 (non-convex cas€onsider the followingt U ¥ U LA(Z) formulad

f’UT ~(f(ve) = f(v2)) A= (F(v2) = F(va)) A (F(V3) = vs) A (f (V1) = Ve)A
LAZ): 1> 0)AM<DA(NVs=Vva—1)A(Va=0)A(Va=1)A 3
(V2> Vg) A (V2 <Vg+1).

Here (see Fig. 3) all the variableg(...,vg) are interface onesh contains only unit
clauses, so after the first run of unit propagations, DPLLegates the assignment
which is simply the set of literals ip. The Nelson-Oppen combination schema then
runs as follows. First, the sub-assignmet,+ is given to theEUF solver, which
reports its consistency and deduces no interface equalign, the sub-assignment
Ha(z) is given to theLA(Z) solver, which reports its consistency and deduces the
disjunction(v1 = v3) V (v1 = va). Next, there is a case-splitting and the two equalities
(v1 = v3) and(vy = v4) are passed to thEUF solver. The first branch, corresponding
to selectingvy = v3), is opened: then the spi¢;# U {(v1 = v3)} is EUF -consistent,
and the equalityvs = vg) is deduced. After that, the assignment;) U {(vs = Vve)}

is passed to th&.4(Z) solver, that reports its consistency and deduces anotsjendk
tion, (v2 = v3) V (V2 = va). At this point, another case-splitting is needed in ‘B& ¥
solver, resulting in the two branchpg ;¢ U {(v1 =Va), (V2 = v3)} andpz g U{(v1 =

v3), (V2 = va) }. Both of them are found inconsistent, so the whole branchipusly
opened by the selection @f; = v3) is found inconsistent; at this point, the other
case of the branch (i.e. the equalityy = va)) is selected, and since the assignment

function Bool+T1+7> (¢i: quantifier-free formula

1 ¢ purify(¢:)

2 4P — T2B(Atomgd) Uinterfaceequalitiesd))
3 OP — T2B(d)

4 while Bool-satisfiable(¢P) do
5 Y Apb AP = pP «— pick total_assigr{ 4P, ¢P)
6 (p1,)« T3-satisfiable(B2T (U A b))

7 (P2, Tp)+— Tz-satisﬁable(asn(p%’ ALB))

8 if (p1 = sat Apy = sat) then return sat else

9 if p1 = unsat then ¢P «—— GPAT2B(—y)
10 if p» = unsat then P —— ¢pP A T2B(~Tp)
11 end while

12 return unsat

end function

Fig. 4. A simplified view of the Delayed Theory Combination procesltor SMT(‘7; U ‘%)

Meur U{(vi =Va)} is EUF -consistent and no new interface equality is deduced, the
Nelson-Oppen method reports tell F U LA(Z)-satisfiability of¢ under the whole
assignmeni. a

3 SMT for combined theories via Delayed Theory Combination

In the Delayed Theory Combination (@) schema [3, 6], th&MT(Z3 U Z2) problem

is tackled in a different way: each of the tvi solvers works in isolation, without
direct exchange of information. Their mutual consistersogrisured by augmenting the
input problem with all interface equalities; , even if these do not occur in the original
problem. The enumeration of assignments includes not dxelyatoms in the formula,
but also the interface equalities. Both theory solvers receive, from the boolean level,
the same truth assignme for &;: under such conditions, the two “partial” models
found by each decision procedure can be merged into a modgldanput formula.

A simplified view of the algorithm is presented in Fig. 4. lally (lines 1-3), the
formula is purified, thenew g;’s are created and added to the set of propositional sym-
bols 4P, and the propositional abstractid@® of ¢ is created. Then, the main loop is
entered (lines 4-11): whil$P is propositionally satisfiable (line 4), a satisfying truth
assignmenglP is selected (line 5). It is important to stress that truthueal are associ-
ated not only to atoms iy, but also to thes; atoms, even though they do not occur in
. P is then (implicitly) separated intp{ A p€ A pb, whereB27 (1) is a set ofi-pure
literals andB27 (L8) is a set ofg;-literals. The relevant parts @f are checked for con-
sistency against each theory (lines 6-Z}satisfiabl¢u) returns a pairp;, 15), where
pi is unsat iff pis unsatisfiable irf;, andsat otherwise. If both calls t@;-satisfiable re-
turnsat, then the formula is satisfiable. Otherwise, wipgis unsat, thentg is a theory
conflict set, i.eq C pandTs is Zi-unsatisfiable. TherP is strengthened to exclude
truth assignments which may fail in the same way (line 9-409l, the loop is resumed.

Unsatisfiability is returned (line 12) when the loop is editithout having found a
model.

In practical implementations of Tr, the search for a satisfactory assignment is
based on a modern DPLL engine, performing literal selectioit-propagation, back-
jumping and learning, early pruning, and theory deductes explained in §2.2. In
particular, Drc can be enhanced tj-deduction, in whiclg;j’s can by deduced by the
Ti-solversand hence unit-propagated. We refer the reader to [3, 6] fooee detailed
discussion.

Notation-wise, we call iew ej’s all the interface equalities;j’s which do not
occur in any clause of the input formupg(including all the clauses learned). Moreover,
we often write sets of literal§l, ...,I,} as conjunctiong A ... Al,, and we often write
clauseqV;li) v (Vjlj) as implications(A; =li) — (V;1j) or (Ai =li AAj—lj) — L.

Hereafter, for the sake of proving the theoretical resuit§4 and 85, we assume
that DTc implements the following strategy.

Strategy 1 (NO emulation)

1. All the conflict clauses derived by theory conflicts areried.>
2. Each conflict clause in 1. is a mixed boolean+theory candlause which is built
from the theory conflict set by means of the last-UIP stratiscribed ir§2.2.°
3. The literal selection heuristic and tlg-solvers calls are such that:
(i) new g;’s are selected only after all the other literals have beesigised,
(i) Early pruning (EP) is applied before every selection of a leﬁv\F
(i) the new g’s selected are always assigned false,
(iv) eachZj-solveris invoked only if at least one literal (which has heen deduced
singularly byZ;-solver itself) has been added to its input since the ladt al
4. Atevery early-pruning call on a branch (namely u) whicfoisnd bothZ; - and‘Z»-
consistent, if ong-solver performs thejgdeduction fi = Vij(=1 €j, S.t. i C Yy,
each g being an unassigned interface equality on variables in gnth
() the clauseT2B(u" — Vlj(=l gj) is learned immediately;
(i) if k=1, then g is added to the current assignment and unit-propagated imme
diately;
(i) if k > 1, then—ey,...,—e are put on the top of the literal selection list, so that
to be the nextg;’s selected by the literal selection heuristic.

5 That is, if oneZ;-solverreturns a conflict set, then the conflict clause&2B(—) is always
added tapP, either temporarily or permanently.

6 That is, each conflict clause contains all and only (the negatf) the decision literals which
forced the unit-propagation or tieg -deduction of those in the theory conflict.

" That is, before adding a new (negates]) to 1, the Zi-satisfiability ofis checked for both
TI’s by calling theZj-solvers. If W is found Z-inconsistent for somé;, then the procedure
backtracks.

8 This avoids invoking aZ-solvertwice in sequence on the same input. The restriction “which
... by Ti-solveritself” means that, iffj-solver(l) returns “Sat” and deduces, thenZj-solver
is not invoked oruU {g; }.

Hea) -
{(VO > Vl)7 (VO < Vl)a

(Ve = F(v2)), (v7 = f(vs | (v2=V3—Va)}
RESE® -RESET¥
e LMs=v)
£2(Q)-deducg vy = v LA(Q)-deduce(vg = V.
@ egrncéz (Vo =) Iearg%)él o)
EUF-deduce(vs = Va) (Vs = V4)
earnCag |/
L£A(Q)-deduce(vy = vs) SAT
learnCaps Cot: (M, 7)) — (Vo=V1)
a{a.‘f'unsat Cay: (I‘l/fuj' A(Vo=V1)) — (V3 =Va)
7 Cos: (HZA<Q)A(V5:0)A(V3:V4)) — (V2:V5)
70 (Mg A (V2= V5)) — (V6 = V7)

Fig. 5.DTC execution of Example 3 anA4(Q) U EUF , with g -deduction-completé-solvers.

5. [If and only if both 7i-solvers are gj-deduction complete]
If a total assignment u which propositionally satisfiess foundZ;-satisfiable for
both7’s, and neitherZ-solver performs any;gdeduction from y, theBTc stops
returning “Sat”. °

4 DTC with g;-deduction-complete7;-solversvs. NO

In this section, we assume that both thiesolvers employed by ©c aregj-deduction
complete. Under these assumptions, we have the followmgtre

Theorem 1. Let‘7; and‘Z; be two stably-infinite (possibly non-convex) theories a&td |
both Zj-solvers be g-deduction complete; lep be a pureZ; U 7 formula and let p
be a total assignment propositionally satisfyipgLet DTC with Strategy 1 prove the
‘71 U Tp-consistency (resply U Tx-inconsistency) of |, returning a conflict sgin the
case of inconsistency. Let dbc be the number of boolean branches required in the
DTc proof. Then we have:

dtc_br < no_br 4)

no_br being the number of branches performed by a corresponii@gproof of the
T U ‘T-consistency (resp; U To-inconsistency) of .

Theorem 1 states that, under the same hypotheseg-déduction as NO, Dc
emulates NO with no extra cost in terms of boolean search.

Example 3 (convex cas&)onsider again th& U U £LA4(Q) formulad of Example 1.

Figure 5 illustrates a Dc execution when botfj-solvers aresj -deduction complete.
Onthe left branch (wheRE SE ¥ is selected), after the unit-propagatior{e =0),

the LA4(Q) solver deduceévp = v1), and thus by Step 4. (i) of Strategy 1, the clause

Co1 is learned andvp = v1) is unit-propagated. As a consequence of this, &1 F

9 Step 5. is identical to thé; U Z3-satisfiability termination condition of NO.

solver can deducrs = vy), resulting in the learning d@34 and the unit-propagation of
(v3 = Vva), which in turn causes th€4(Q)-deduction of(v, = vs), with the resulting
learning ofCy5 and unit-propagation of the deduced equality.

Atthis point,piy. ., - U{(v2 = vs)} 1%is foundE 71 F -inconsistent, so that tr& 71 -
solver returns (the negation of) the claugdg, which is resolved backward with the
clausesCys, Caa, Co1, (V6 = Vv7), and (RESEF — (vs = 0)) as explained in Step
2. of Strategy 1, obtaining a mixed theory+boolean confllauseCg; in the form
(1 ARESE¥) — L s.t.y" contains no interface equalit@g, forces Drc to backjump
up to the last branching point. Then the execution of thetrighnch begins with the
unit-propagation of-RESE § onCy; and hence ofvs = vg) on—-RESE ¥ — (V5 = Vg),
which produces an assignment propositionally satisfginghe theory solvers are in-
voked, and the£L4(Q) solver deduces agaiivg = v1), learning a claus€y, which is
similar toCp1 except for the fact that it may contain the redundant litéval= vg) in-
stead of(vs = 0). 1 Then(vz = v4) is unit-propagated 0Gz4. At this point, since both
theory solvers cannot deduce any ngyy by Step 5. of Strategy 1 T concludes that
¢ is ZUF U LA(Q)-satisfiable. O

Notice that the left branch of the @ search tree of Figure 5 mimics directly that
of the NO execution of Figure 2. The main difference relieshanfact that, unlike with
NO, the deduced;j’s are not exchanged directly by ti¥-solvers but rather they are
added to the current assignmerand unit-propagated.

In the right branch, instead, all values are assigned dijrdat unit-propagation.
This fact illustrates one further potential advantage afcDwith respect to NO: the
fact that news;j’s are known a priori to the DPLL engine allows their inclusiio the
learned clauses derived by theory conflicts. Thanks to proipagation, this makes it
possible to assign truth values to theirectly at the boolean leveglithout performing
the (potentially costly) invocation of th@-solvers. In the traditional NO schema, this
fact does not come naturally, because the boolean solvevknothing about the;j’s.

We consider now the case where sofis are non-convex.

Example 4 (non-convex cas€pnsider theE U F U LA(Z) formula¢ and assignment
u of Example 2. Figure 6 illustrates aTi@ execution when botl-solvers aresj-
deduction complete.

The first invocation of theL4(7Z) solver results in deducing of the disjunction
(vi = v4) V (v = v3) and learning of the corresponding clausg;. By Step 4.(iii)
of Strategy 1, then(vi = v4) and (v1 = v3) are put on the top of the literal selec-
tion list. As a consequence,T@ selects~(v1 = v4), and thanks t&; 3 it immediately
unit-propagatesvs = vs). At this point theZU¥F solver can deducévs = vg), SO
that the claus€sg is learned and the deduced equality is unit-propagated oiratedy.
Whenpi, 4(z) U{ (Vs = V) } is passed to thé 4(Z) solver, this deduces the disjunction
(V2 =Vv4) V (V2 = v3), learningCys. Selecting—(v» = v4) results in the unit-propagation
of (v2 = v3), which in turn causes &UF conflict. After the £U ¥ -solver returns

10 Hereafteryt, 1., Wy will denote generic subsets pf, 7 € {EUF,LA(Q), LA(Z)}.

11 Here we assume the “worst” case in Whip@ﬂ(@ in Cp1 contains the (redundant) literal
(vs = 0). If this is not the case, thefvy = v1) is directly unit-propagated ofy;, without
calling the theory solvers.

Heur' | Keaz): GER U/pq(z)) — (V1 =Va)V (V1 =Va))

=(f(v1) = f(w)) (v >0 Vs=Vvs—1 oo (Mg A\ (V1= V3)) = (V5= Vo
B I VS St Caa: (1307, A (Vs =) — (12 = Vo) V (v2 =)
F(vg) = Vg |V2 > Ve vi=1 Cos: LL;TU/\EV1:V3;/\EV2:V3;;HJ_
vaJ:ve Vo<Ve+1 Cia: (Mg A(Vi=V3)A(V2a=Va)) — L
LA(Z)-deducevs = V) V (V1 = v3), learnCy3
Vi =Vg
SAT

EUF-unsatCoy

Fig. 6. DTC execution of Ex 4 oL A(Z) U‘EUF , with gj-deduction-completd;-solvers.

(the negation of)Cp4, DTC backjumps up to a point wherg, = v4) can be unit-
propagated. This results again in @&t -conflict, so that theE U -solver returns
(the negation ofiCy4, which causes another backjumping up to whigte= v4) can be
unit-propagated. Then, after another invocation to themphsolvers, Orc stops, declar-
ing ¢ to be EUTF U LA(Z)-satisfiable. O

As with the convex example, notice that tha®search tree of Figure 6 mimics
directly that of the NO execution of Figure 3 (bathc_br andno_br are equal to 3.)

5 DTC with non gj-deduction-completej-solversvs. NO

In this section, we assume that both thesolversemployed by D¢ are—ej-minimal
and have limited or nejj-deduction capabilities. Under these assumptions, wethave
following result.

Theorem 2. Let 77 and 7> be two stably-infinite (possibly non-convex) theories. Let
bothZ;-solvers be-gj-minimal, and possibly have somg-deduction capabilities; let

¢ be a pureZ; U7 formula and let p be a total assignment propositionallysgtngd.

Let DTC with Strategy 1 prove th€; U Z>-consistency (resply U Zz-inconsistency) of

M, returning a conflict sef in the case of inconsistency. Let dicand dtcded be the
number of boolean branches and gf-deductions performed in theTc proof. Then
we have:

dtc._br +dtc.ded < nobr+no.ded (5)

no_.ded and ndbr being respectively the number of deductions and of brasger-
formed by a corresponding NO proof of tiigU 7>-consistency (resp U Z-inconsis-
tency) of .

Theorem 2 states that, if tfig-solvers are botkej-minimal, then there is a strategy
for DTC which emulates some NO proof (even though‘solvers have limited or no
&j-deduction capabilities!) at the cost of (at most) one ekbalean branch for every

Hzur: Heawz):
Vo)) V1 >0 Vs=V;—1
=

ﬂ(Vl =V3 '/
LA(Z)-unsatCya, -~ .7
(Vs = VBV\, - TEUF-unsatCya

£ﬂf—unsat,(%§;L,f Cis: (Hoagz) — (V1 =Va) V (v = Va))
_‘(Vz_v“)g C56: (l,l.lz,uf/\(V1:V3)) — (V5:V6)
M2 =Vs Cas: (W} qz) A (Vs =Vg)) — (V2 =V3) V (V2= V4))
—\(Vz = V3)/ UF-unsatCpq Cos: (“%[u? A (Vl _ Vg) A (VZ _ VB)) L
LA(Z)-unsatCos Cia: (Mg A(Vi=Va)A(Va=Vg)) — L

Fig.7.DTC execution of Example 5 on4(Z) U EUF, with nogj-deduction. The claus&;’'s
are the same as those of Fig. 6.

&j-deduction performed by NO. Therefore the (possibly veryamsive)s;-deduction
steps of the NO schema can be avoided at the cost of one extiegndoranch each.

More generally, we notice that one key idea in the proof ofdreen 2 is that, when
the DPLL engine fails and generates a conflictmgeit backjumps up to the second-
most-recently-assigneds;j in T, if any [7]. (See, e.g., the case Gf3 in Figure 7.)
Therefore, in a more general case than that of Theorem 2-@yeminimality), the
more redundant-g;j’s the 7i-solvers are able to remove from the conflict set returned,
the more boolean branches are skipped by backjumping

Example 5 (nojg-deduction, non-convex cas€onsider theE UF U LA(Z) formula
¢ (3) and the assignmeptof Example 2. Look at Fig. 7. Both, 4(z) andpzq 5 are
found consistent in the respective theories by the respestilvers.

Then Drc starts selecting newej’s, and proceeds without causing conflicts, until
it selects—(v1 = v4) and—(v1 = v3), which cause a_4(Z) conflict. The branch is
in the formuuUUJ; —ej, so that, the-ej-minimal conflict setni3 returned is in the
form p’m(m U{=(v1 = v3),~(v1 = va)}. Thus Drc learns the corresponding clause
C13(see Fig 7) and backjumps up to the highest point which alfowsnit-propagating
(v1 = v3) onCy3, and performs such unit propagation. Themdstarts and proceeds
selecting new-g;’s without causing conflicts, until it selectgvs = vg), which causes
aEUYF conflict represented by the clauSgs. As EUF is convex,~(vs = Vg) is the
only —gj occurring in the conflict set, so thatTid backtracks over the last chain of
—gj’s and unit-propagatg¥s = Ve).

Again, Dtc selects a chain of newej’s without causing conflicts, until it selects
—(v2 = v4) and—(v2 = v3), which cause &4(Z) conflict represented by clau§gs.

As before, it backjumps to the highest point where it can-pnifpagatgve = vs).
Performing the latter unit propagation causeBd ¥ conflict, learning the clauséa.
By applying Step 2. of Strategy 1, resolving on litefed = v3) the conflicting clause

Co4 with the clauséCy3 (which caused the unit-propagation(@b = v3)), DTC obtains

a clauseC), : (u’éﬂ@ AMzqq N (Vs =Ve) A (V1 = V3)) — (V2 = Va), which allows it
for backjumping over all the remainingg;’s of the current chain and unit-propagating
(Vz = V4).

The latter causes a ne®U ¥ conflict represented by the clauSgy. By Step 2. of
Strategy 1C14 is resolved with the claus€,, Cse, C13 (Which caused the propagation
of (V2 =va), (V5 = Vg), (V1 = V3) respectively), obtaining the clau§, : (“/LﬂMZ) A

/11

“Zﬂ(z) AMzqq AMEqs AMgEqy) — (Vi = va), which allows for backjumping up tp
and unit-propagating/y = va).

Finally, DTc starts and proceeds selectingj's (possibly unit-propagating some
value due to the clauses learned) without generating ct)ffo that to conclude that
the formula is7; U Zx-satisfiable.

Comparing with Fig. 3dtc_br = 6, dtc.ded= 0, no.ded= 3 andno_br = 3. a

Notice that the three leftmost diagonal branches in Fig.taiolihe same effect as the
g;j-deduction steps in Fig. 6 (and in Fig. 3).

6 Conclusions

Theorem 1 shows that, under the same hypotheseg-oeduction-completeness as
NO, DTc can emulate NO, with no extra boolean search. Theorem 2 sti@atisun-
der the hypothesis ofg;j-minimality, evenTi-solvers with limited or nag;j-deduction
capabilities allow Dc to emulate NO, at the cost of (at most) one extra boolean
branch for every (possibly very expensiva)-deduction performed by NO. Both re-
sults also highlight the fact thati@ naturally allows for learning clauses containing
&j’s, which can be used in subsequent branches to prune seatavaid redoing the
same search/deductions from scratch.

We remark that Strategy 1 has been conceived only for mimgRKO, and by no
means it is assumed to be the most efficient strategy far. E.g., Step 3.(ii) can be
substituted with a weakened version of EP [4], and more effiditeral selection strate-
gies might be preferable to Step 3.(i) and (iii).) Some aktives are currently under
investigation, and their theoretical properties and pcatperformance are subjects for
future work.

As far as the-gj-minimality hypothesis is concerned, we notice that, astdar
theories likeEUF and LA(Q), there are known decision procedures that fulfill this
requirement (see [12] and [4] respectively.) For other the=p the problem of-g;-
minimization opens a novel research branthHowever, we remark that Tt works
also when theZj-solversare not-g;-minimal, at the cost of (at most) one extra branch
to explore for each redundant; returned in a conflict set.

It is also important to notice that, in general, only a frantiof the assignments
K enumerated turn out to b§-satisfiable for bothz’s, so that to require the boolean

12 Bottom line, one can always make-g;-minimal by dropping the remainingejj's one by
one, each time checking\ {—&; }. Notice that, in general, withe ; -minimization the search
for the candidate-gj’s to drop is restricted to only those occurring jin whilst with ;-
deduction the search for the candidgfés to deduce extends to all the unassigegt.

search on thaj's. Thus, for all the other branches;TD may save the effort of many
failed attempts of deducing implies}’s.

On the whole, the results presented in this paper show that @&lows for trad-
ing boolean search fogj-deduction. Thus everyone can choose and implement the
most suitableZ;-solverswithout being forced by thej-deduction-completeness strait-
jacket: for theories for which efficiers;-deduction complete procedures are available
(e.9..EU¥ [12]), DTc allows for exploiting the full power odj-deduction; for harder
theories (e.g.LA(Z)), the research task changes from that of findé)gdeduction
completeT -solversto that of finding—-&;-minimal or nearly—e;j-minimal ones.

References

1. A. Armando, C. Castellini, E. Giunchiglia, and M. Maratela SAT-based Decision Proce-
dure for the Boolean Combination of Difference ConstraittsProc. SAT'042004.

2. C.L. Barrettand S. Berezin. CVC Lite: A New Implementatiaf the Cooperating Validity
Checker. InProc. CAV'04 volume 3114 oL NCS Springer, 2004.

3. M. Bozzano, R. Bruttomesso, A. Cimatti, T. Junttila, R.Rpssum, S. Ranise, and R. Sebas-
tiani. Efficient Satisfiability Modulo Theories via Delay&tieory Combination. IfProc. Int.
Conf. on Computer-Aided Verification, CAV 200®Iume 3576 oL NCS Springer, 2005.

4. M. Bozzano, R. Bruttomesso, A. Cimatti, T. Junttila, R.Rossum, S. Schulz, and R. Se-
bastiani. An incremental and Layered Procedure for thesgalility of Linear Arithmetic
Logic. InProc. TACAS’05volume 3440 oL NCS Springer, 2005.

5. M. Bozzano, R. Bruttomesso, A. Cimatti, T. Junttila, B.Rossum, S. Schulz, and R. Sebas-
tiani. MathSAT: A Tight Integration of SAT and Mathematida¢cision Procedurelournal
of Automated Reasoning005. to appear.

6. M. Bozzano, R. Bruttomesso, A. Cimatti, T. Junttila, f ®ossum, S. Ranise, and R. Se-
bastiani. Efficient Theory Combination via Boolean Seaiaformation and Computatign
2005. To appear.

7. R. Bruttomesso, A. Cimatti, A. Franzén, A. Griggio, andS$®bastiani. Delayed Theory
Combination vs. Nelson-Oppen for Satisfiability Modulo Bhes: a Comparative Analysis.
Technical Report DIT-06-032, DIT, University of Trento,@) Available athttp://dit.
unitn.it/~rsebal papers/| par06_dt c_ext ended. pdf .

8. S. Cotton, E. Asarin, O. Maler, and P. Niebert. Some Pswgire Satisfiability Checking for
Difference Logic. InProc. FORMATS-FTRTFT 2002004.

9. J.-C. Filliatre, S. Owre, H. Ruel3, and N. Shankar. IC&drated Canonizer and Solver. In
Proc. CAV'0] volume 2102 oL NCS pages 246-249, 2001.

10. H. Ganzinger, G. Hagen, R. Nieuwenhuis, A. Oliveras,@ndinelli. DPLL(T): Fast deci-
sion procedures. IRroc. CAV'04 volume 3114 oL NCS pages 175-188. Springer, 2004.

11. G. Nelson and D.C. Oppen. Simplification by CooperatiegiBion Procedure ACM Trans.
on Programming Languages and Systef{8):245-257, 1979.

12. R. Nieuwenhuis and A. Oliveras. Congruence Closure imitbger Offsets. IrProc. 10th
LPAR number 2850 in LNAI, pages 77-89. Springer, 2003.

13. R.E. Shostak. Deciding Combinations of Theorisirnal of the ACM31:1-12, 1984.

14. L. Zhang, C. F. Madigan, M. H. Moskewicz, and S. Malik. &#nt conflict driven learning
in a boolean satisfiability solver. IAroc. ICCAD '01 IEEE Press, 2001.

15. L.Zhang and S. Malik. The quest for efficient boolears$atbility solvers. IrProc. CAV’'02
number 2404 in LNCS, pages 17-36. Springer, 2002.

