
Analysis of Cyclic Fault Propagation via ASP

Marco Bozzano1[0000−0002−4135−103X],
Alessandro Cimatti1[0000−0002−1315−6990], Alberto Griggio1[0000−0002−3311−0893],

Martin Jonáš1[0000−0003−4703−0795], and Greg Kimberly2

1 Fondazione Bruno Kessler, Trento, Italy
{bozzano,cimatti,griggio,mjonas}@fbk.eu

2 The Boeing Company, Seattle, USA
greg.kimberly@boeing.com

Abstract. Analyzing the propagation of faults is part of the prelimi-
nary safety assessment for complex safety-critical systems. A recent work
proposes an smt-based approach to deal with propagation of faults in
presence of circular dependencies. The set of all the fault configurations
that cause the violation of a property, also referred to as the set of min-
imal cut sets, is computed by means of repeated calls to the smt solver,
hence enumerating all minimal models of an smt formula. Circularity
is dealt with by imposing a strict temporal order, using the theory of
difference logic.
In this paper, we explore the use of Answer-Set Programming to tackle
the same problem. We propose two encodings, leveraging the notion of
stable model. The first approach deals with cycles in the encoding, while
the second relies on asp Modulo Acyclicity (aspma).
We experimentally evaluate the three approaches on a comprehensive set
of benchmarks. The first asp-based encoding significantly outperforms
the smt-based approach; the aspma-based encoding, on the other hand,
does not yield the expected performance gains.

Keywords: Fault propagation; SMT; ASP modulo acyclicity; Minimal
models

1 Introduction

Analyzing the propagation of faults is an important step of the preliminary
safety assessment for complex safety-critical systems. When a physical compo-
nent fails, its faults can propagate to the other components and compromise their
behaviour. Fault propagation is often mitigated by adopting suitable architec-
tures based on redundancy and voting. In order to analyze such architectures,
the challenge is to compute the set of all minimal cut sets (mcs), i.e., minimal
fault configurations that can compromise a given function under investigation.
Since the behavior of the systems in question is usually monotone, i.e., adding
more faults does not fix the compromised function, the minimal cut sets are
sufficient to succinctly represent the set of all cut sets, which might be exponen-
tially larger. From the set of all minimal cut sets it is thus possible to extract

important artifacts such as fault trees and reliability measures (e.g., overall sys-
tem failure probability). For this reason, the main focus of this paper is on the
task of enumerating all minimal cut sets of the given system.

mcs enumeration is particularly challenging when dealing with cyclic depen-
dencies. Consider, for example, the case of an electrically-controlled hydraulic
system. Its fault may compromise power generation; on the other hand, the
failure of power generation may compromise the hydraulic operation. This cir-
cularity makes it difficult to model fault propagation in form of simple logical
implications because self-supporting, unjustified models arise. A recent work [4]
shows how the inherent sequential nature of the problem can be reduced to an
approach based on Satisfiability Modulo Theories (smt). The set of minimal cut
sets is computed by means of repeated calls to the smt solver, hence enumerating
all minimal models of an smt formula. The key idea in dealing with circularity
is to impose a strict temporal ordering on the propagation of events, using the
theory of difference logic. The results presented in [3] and in [4] show that the
smt approach is able to deal with realistically-sized redundancy architectures.

In this paper, we explore an alternative approach to minimal cut set enu-
meration, based on the use of Answer-Set Programming (asp). The intuition is
to leverage the fact that in asp clauses are interpreted as (directed) rules rather
than implications, thus limiting the search based on the notion of stable model.

We propose two approaches. The first one is a direct encoding into asp. It
deals with cycles in the encoding by requiring that the failure of a component
must be justified either by a local fault or by the justified failure of neighbor-
ing components (or their combination). Default negation is used to model the
justifications of the propagation.

The second encoding relies on the idea of asp Modulo Acyclicity (aspma) [2],
where models can be required to be acyclic with directives to an extended solver.
Acyclicity is then enforced at run-time by means of a dedicated, graph-based
data-structure preventing circular dependencies. Although not all asp solvers
deal with a built-in “modulo acyclicity” feature, we expected that this could
lead to additional performance boost.

We carried out an extensive experimental evaluation, on all Boolean (real-
world and random scalable) fault propagation benchmarks from [4] and [3]. The
benchmark suite includes both acyclic and cyclic problems. We contrasted the
smt approach with the asp and aspma approaches proposed in this paper. On
acyclic benchmarks, the asp encodings demonstrate better scalability than the
smt-based cut set enumeration. On the cyclic benchmarks, the asp encoding
dominates over the smt-based encoding. Quite surprisingly, the aspma encod-
ing does not scale as well, and it is outperformed, especially on the hardest
benchmarks, both by the asp-based and smt-based encodings.

The paper is structured as follows. Section 2 presents the logical preliminar-
ies. Section 3 describes fault propagation graphs and the smt-based encoding.
Section 4 presents the asp-based and aspma-based encodings. Section 5 dis-
cusses the issue of minimality. Section 6 presents the experimental evaluation.
Section 7 draws conclusions and outlines directions for future works.

2 Preliminaries

2.1 Logic and Notation

We assume that the reader is familiar with standard first-order logic and the
basic ideas of Satisfiability Modulo Theories (smt), as presented, e.g., in [1].
We use the standard notions of interpretation, theory, assignment, model, and
satisfiability.

Given a quantifier-free formula ϕ(B,R) in real arithmetic defined over a set of
Boolean variables B and of real variables R, a model of ϕ is an assignment µ that
maps each b ∈ B to a truth value µ(b) ∈ B (> for true and ⊥ for false) and each
x ∈ R to a real number µ(x) ∈ R, such that ϕ evaluates to true on µ. We denote
this with µ |= ϕ. If ϕ is a formula and µ is an assignment that maps each variable
of ϕ to a value of the corresponding sort, [[ϕ]]µ denotes the result of the evaluation
of ϕ under this assignment. If B′ ⊆ B is a subset of the Boolean variables of ϕ,
µ is called its minimal model with respect to B′ if µ is a model of ϕ and there is
no model µ′ |= ϕ such that {b ∈ B′ | µ′(b) = >} ({b ∈ B′ | µ(b) = >}.

2.2 Answer Set Programming

This subsection briefly introduces the syntax and semantics of disjunctive Answer-
Set Programs and asp modulo acyclicity, based on [8] and [2], respectively.

Rules. A disjunctive rule r is an expression of the form

p1 ∨ . . . ∨ pl ← pl+1, . . . , pm,∼pm+1, . . . ,∼pn,

where 0 ≤ l ≤ m ≤ n and p1, . . . , pn are propositional atoms. The head of
r is defined as hd(r) = {p1, . . . pl} and the body of r is defined as bd(r) =
{pl+1, . . . , pm,∼pm+1, . . . ,∼pn}. For any set L = {pl+1, . . . , pm,∼pm+1, . . . ,∼pn},
let L+ = {pl+1, . . . , pm} and L− = {pm+1, . . . , pn}. A rule r is said to be appli-
cable with respect to a set of propositional atoms X if the set X contains all the
positive atoms from bd(r) and no negative atoms from bd(r), i.e., bd(r)+ ⊆ X
and bd(r)−∩X = ∅. The rule r is said to be satisfied with respect to X if its body
implies its head, i.e., the rule is not applicable or hd(r)∩X 6= ∅. The rules with
bd(r) = ∅ are called facts and are written as p1∨. . .∨pl. The rules with hd(r) = ∅
are called integrity constraints, are written as ← pl+1, . . . , pm,∼pm+1, . . . ,∼pn,
and are satisfied only if they are not applicable, i.e., if at least one of the atoms
in the body is not satisfied.

Answer Set Programs. A disjunctive answer set program P is a set of rules. A
set of atoms that occur in the program P is denoted as At(P). A set of atoms
X is called a model of P if all rules r ∈ P are satisfied with respect to X. The
reduct of P with respect to the set of atoms X is defined as PX = {hd(r) ←
bd(r)+ | r ∈ P, bd(r)− ∩X = ∅}. A model X of P is called an answer set of P
or a stable model of P if X is a minimal model of PX , i.e., there is no Y (X
such that Y is a model of PX .

ASP modulo acyclicity. An acyclicity extension of a program P is a pair (V, e)
where V is a set of nodes and e : At(P) → V × V is a partial function that
assigns edges between vertices of V to atoms of P . A program together with its
acyclicity extension is called an acyclicity program.

A set of atoms X is called a stable model of the acyclicity program P subject
to the acyclicity extension (V, e) if X is a stable model of P and the graph
(V, {e(p) | p ∈ X}) induced by the set of atoms X is acyclic.

3 Fault Propagation Graphs

In this section we briefly introduce the formalism of (symbolic) fault propagation
graphs (fpgs). Intuitively, fpgs describe how failures of some components of
a given system can cause the failure of other components of the system. In an
explicit graph representation, nodes correspond to components, and edges model
their dependencies, with the meaning that an edge from c1 to c2 states that the
failure of c1 can cause the failure (propagation) of c2. Here, we adopt a symbolic
representation, in which components are modeled as Boolean variables (where
⊥ means “not failed” and > means “failed”), and the failure dependencies are
encoded as formulae canFail(c), which describe the conditions that may cause a
failure of c. The basic concepts are formalized in the following definitions, which
are simplified definitions from [3] and [4]. The original paper [4] also defines
fpgs with multiple failure modes with arbitrary orderings. We do not treat
these features here to simplify the presentation, but we note that the approach
of this paper can be extended to accommodate them in the same way as in [4].

Definition 1 (Fault propagation graph [3]). A (symbolic) fault propagation
graph (fpg) is a pair (C, canFail), where C is a finite set of system components
and canFail is a function that assigns to each component c a Boolean formula
canFail(c) over the set of variables C.

We assume that all the canFail(c) formulas are positive, i.e., they can contain
only conjunctions, disjunctions, and variables. Moreover, without loss of gener-
ality, we assume that all the canFail(c) formulas are in disjunctive normal form,
i.e., they are of the form

∨
D∈F

∧
d∈D d for some set F of cubes of dependencies.

Definition 2 (Trace of FPG [3]). Let G be an fpg (C, canFail). A state of
G is a function from C to B. A trace of G is a (potentially infinite) sequence of
states π = π0π1 . . . such that all i > 0 and c ∈ C satisfy (i) πi(c) = πi−1(c) or
(ii) πi−1(c) = ⊥ and πi(c) = [[canFail(c)]]πi−1 .

Example 1 ([3]). Consider a system with components control on ground (g),
hydraulic control (h), and electric control (e) such that g can fail if both h
and e have failed, h can fail if e has failed, and e can fail if h has failed. This
system can be modeled by a fault propagation graph ({g,h,e}, canFail), where
canFail(g) = h ∧ e, canFail(h) = e, and canFail(e) = h.

One of the traces of this system is {g 7→ ⊥,h 7→ >,e 7→ ⊥}{g 7→ ⊥,h 7→
>,e 7→ >}{g 7→ >,h 7→ >,e 7→ >}, where h is failed initially, which causes

failure of e in the second step, and the failures of h and e together cause a
failure of g in the third step.

Definition 3 (Cut set [3]). Let G be an fpg G = (C, canFail) and ϕ a positive
Boolean formula, called top level event. The assignment cs : C → B is called a
cut set of G for ϕ if there is a trace π of G that starts in the state cs and there
is some k ≥ 0 such that πk |= ϕ. A cut set cs is called minimal if there is no
other cut set cs ′ such that {c ∈ C | cs ′(c) = >} ({c ∈ C | cs(c) = >}.

Without loss of generality, we assume in the rest of the paper that the top
level event ϕ consists only of one variable, i.e., ϕ = c for some c ∈ C. For brevity,
when talking about cut sets, we often mention only the components that are set
to > by the cut set.

Example 2 ([3]). The minimal cut sets of the fpg from Example 1 for the top
level event ϕ = g are {g}, {h}, and {e}. These three cut sets are witnessed by
the following traces:

1. {g 7→ >,h 7→ ⊥,e 7→ ⊥},
2. {g 7→ ⊥,h 7→ >,e 7→ ⊥}{g 7→ ⊥,h 7→ >,e 7→ >}{g 7→ >,h 7→ >,e 7→ >},
3. {g 7→ ⊥,h 7→ ⊥,e 7→ >}{g 7→ ⊥,h 7→ >,e 7→ >}{g 7→ >,h 7→ >,e 7→ >}.

Note that the fpg has also other cut sets, such as {g,e}, {h,e}, and {g,h,e},
which are not minimal.

3.1 SMT-based Encoding of Fault Propagation

In our previous work [4], we have shown that mcs enumeration of cyclic fpgs can
be reduced to enumeration of projected minimal models of a certain smt formula
over the difference logic fragment of linear real arithmetic. The arithmetic is
used to enforce causality ordering between the propagated failures, which would
otherwise cause spurious self-supported propagations.

In particular, for each fpg G = (C, canFail), the paper defines a formula
that contains two Boolean variables Ic and Fc and one real variable oc for each
component c. The variables have the following intuitive meaning: Ic denotes that
the component c is failed in the initial state, Fc denotes that the component c
is failed at some point during the propagation, and oc is a so called time stamp
variable, which intuitively denotes the time when the component c failed.

These variables are then used to construct a formula ϕprop , which describes
fault propagations. The formula contains the following constraints for each c ∈ C
with canFail(c) =

∨
D∈F

∧
d∈D d:

– Ic → Fc, i.e., if the component is failed initially, it is failed at some point
during the propagation,

– Fc → (Ic ∨
∨
D∈F

∧
d∈D(Fd ∧ od < oc)), i.e., if component c fails at some

point during the propagation, it is failed either initially or as a result of a
propagation from its failed dependencies that failed before c.

Insisting that a failure of a variable can be caused only by failures that occurred
before it is a crucial point to preserve causality and prohibit self-supporting
cyclic propagations where a component causes its own failure.

4 Encoding in Disjunctive ASP

In this section we present our novel encodings of fault propagation in asp. In
the rest of the section, let G = (C, canFail) be a fixed fpg and ctle ∈ C a top
level event.

4.1 Encoding Propagations

The encoding uses the following variables for each component c ∈ C with
canFail(c) =

∨
D∈F

∧
d∈D d and F = {D1, . . . , Dn}:

– fail(c), which will denote that πi(c) = > for some i ≥ 0,
– fail local(c), which will denote that π0(c) = >, i.e., the component c is

initially failed,
– fail ext(c), which will denote that π0(c) 6= > and πi(c) = > for some i > 0,

i.e., the component c is failed as a result of fault propagation.
– fail dep(c, j) for each 1 ≤ j ≤ n, which will denote that πi |=

∧
d∈Dj

d
for some i ≥ 0, i.e., the conditions of a propagated failure of c are satisfied
thanks to the j-th disjunct of canFail(c).

Using these variables, we construct an answer set program that contains the fact

fail(ctle) (1)

and the following rules for each component c ∈ C:

fail local(c) ∨ fail ext(c) ← fail(c), (2)

fail dep(c, 1) ∨ . . . ∨ fail dep(c, n) ← fail ext(c), (3)

fail(d) ← fail dep(c, j) for each 1 ≤ j ≤ n, d ∈ Dj . (4)

The rules have the following meaning: (1) states that the tle must be satisfied;
(2) that if a component is failed, it has to be failed either initially or as a result of
a propagation; (3) that if a component is failed as a result of a propagation, one
of the disjuncts in canFail(c) must be satisfied; and (4) that if the j-th disjunct
of canFail(c) is satisfied, all the components that it depends on must be failed.

However, similarly to a naive smt encoding, this encoding allows spurious
propagations in presence of cycles. Given the fpg from Example 1, the encoding
has a stable model {fail(c), fail ext(c), fail dep(c, 1) | c ∈ {g,h,e}}, where
none of the components is failed initially, yet all are failed in the end. This model
does not correspond to any real fault propagation and relies on the impossible
propagation where h fails because of e, which in turn fails because of h. We now
show two possible extensions of the encoding that solve this problem.

4.2 Enforcing Causality by ASP

To solve the problem with self-supporting circular propagations, we introduce
new variables that will encode that a failure is justified, i.e., it is supported by

sufficient initial faults. Intuitively, a failure of component c is justified if it is
due to an initial fault of component c. Moreover, a failure of component c is
justified if it is due to a propagation from a dependency Dj (the j-th disjunct
of canFail(c)) such that all d ∈ Dj are in turn failed and justified.

Therefore, we introduce the following additional variables for each component
c ∈ C with canFail(c) =

∨
D∈F

∧
d∈D d and F = {D1, . . . , Dn}:

– justified(c), which will denote that the failure of c is justified,
– justified dep(c, j) for each 1 ≤ j ≤ n, which will denote that the failure

of c is justified by the j-th disjunct of canFail(c).

We then define the program Pasp as a union of the rules from the previous
subsection and the additional causality rules:

← fail(c),∼justified(c) (5)

justified(c) ← fail local(c) (6)

justified(c) ← justified dep(c, j), fail dep(c, j) for all 1 ≤ j ≤ n (7)

← fail dep(c, j),∼justified dep(c, j) for all 1 ≤ j ≤ n (8)

justified dep(c, j)← justified(d1), . . . , justified(dm) where di ∈ Dj (9)

The rules have the following intuitive meaning: (5) states that it is not possible
that the component c is failed without a justification for the failure; (6) that
the local failure is enough to justify the failure of the component; (7) that if
the j-th disjunct is justified and satisfied, the failure of c is justified; (8) that it
is not possible that the j-th disjunct of the component c is satisfied without a
justification; and (9) that if all dependencies of the j-th disjunct are justified,
the j-th disjunct itself is justified.

Observe how we use integrity constraints and default negation to impose that
failed components/dependencies must be justified. This prohibits the spurious
cyclic propagations and gives the following correctness result:

Theorem 1. Let X ⊆ At(Pasp) be a set of atoms. If X is a stable model of
Pasp then {c ∈ C | fail local(c) ∈ X} is a cut set of G for ctle . Conversely,
if {c ∈ C | fail local(c) ∈ X} is a minimal cut set of G then X is a stable
model of Pasp.

Note that due to the stable model semantics, the program Pasp does not represent
all cut sets of G, because some non-minimal cut sets are prohibited. Nevertheless,
it represents all minimal cut sets, in which we are mainly interested.

4.3 Enforcing Causality by ASP Modulo Acyclicity

In this subsection, we present a second encoding of fault propagation. In contrast
to the encoding from the previous subsection, which uses justification rules to
break self-supporting cyclic propagations, this encoding relies on asp modulo
acyclicity. This makes the encoding simpler, easier to implement, and might offer

better performance due to dedicated implementation of acyclicity propagation
in asp solvers. On the other hand, it restricts the set of usable asp solvers as
not all asp solvers support acyclicity constraints.

The encoding uses the variables fail(c), fail local(c), fail ext(c), and
fail dep(c, j) with the same intuitive meaning as in the previous encoding.
Moreover, for every pair of components c, d ∈ C it uses a variable caused by(c, d)
with the intuitive meaning that the failure of c was directly caused by the failure
(initial or propagated) of d.

Using these variables, we construct the program Paspma that contains rule
(1), for each component c ∈ C contains the rules (2),(3),(4), and for each c ∈ C,
1 ≤ j ≤ n and d ∈ Dj also the rule caused by(c, d) ← fail dep(c, j). The
rules state that if the j-th disjunct of canFail(c) is satisfied, the failure of c is
caused by failures of all the components in the disjunct. We then define the
acyclicity extension (C, e), where e(caused by(c, d)) = (c, d) and e is undefined
for the remaining variables. This ensures that there are no causal cycles among
the propagated failures and therefore no component can cause its own failure.
As a result, an analogue of Theorem 1 holds also for Paspma .

5 Minimality of the Cut Sets

As was shown in the previous section, both the introduced asp encodings contain
stable models for all mcss of the given fpg. Although the stable-model semantics
is able to rule out some non-minimal cut sets thanks to the condition that
the model X must be a minimal model of PX , the programs still admit some
stable models that correspond to non-minimal cut sets. This can be seen in the
following example. Note that the fpg in question is acyclic, and therefore there
is no need of encoding the causality constraints.

Example 3. Consider an fpg (C, canFail) with C = {c1, c2, c3} and canFail(c1) =
c2 ∧ c3, canFail(c2) = c3, canFail(c3) = ⊥ with the top level event c1. The asp
encodings from the previous section produce the following program P :

fail(c1).
fail_local(c1) ∨ fail_ext(c1) ← fail(c1).
fail_local(c2) ∨ fail_ext(c2) ← fail(c2).
fail_local(c3) ∨ fail_ext(c3) ← fail(c3).
fail_dep(c1, 1) ← fail_ext(c1).
fail_dep(c2, 1) ← fail_ext(c2).
← fail_ext(c3).
fail(c2) ← fail_dep(c1, 1).

fail(c3) ← fail_dep(c1, 1).

fail(c3) ← fail_dep(c2, 1).

This program has a stable modelM = {fail(c1), fail(c2), fail(c3), fail ext(c1),
fail local(c2), fail local(c3), fail dep(c1, 1)}, which corresponds to a non-
minimal cut set {c2, c3}. The reason for this is that in order to obtain a model
for the minimal cut set {c3}, the model M would have to be extended with
fail ext(c2) and fail dep(c2, 1) before removing fail local(c2). ut

Non-minimal cut sets arise because the minimality of the cut set is defined
with respect to the local faults, while the minimality of the model is defined
with respect to all atoms, which also include the atoms used for propagation.
Fortunately, asp solvers offer optimization facilities for enumerating stable mod-
els that are minimal according to a given criterion. In particular, it is possible
to enumerate minimal stable models with respect to a given subset of atoms,
either by using subset preference [5] or modified branching heuristics [9]. Our
preliminary experiments shown that the latter option provides vastly superior
performance. Moreover, as each minimal cut set is identified only by values of
atoms FailLocal = {fail local(c) | c ∈ C}, it is sufficient to enumerate the
minimal models w.r.t FailLocal , projected to the set of atoms FailLocal .3

Note that the enumeration of minimal models is more expensive. It prevents
the solver to perform enumeration based only on backtracking: it either forces
the solver to minimize each model and possibly enumerate a single minimal
model multiple times, or it forces the solver to remember all already enumer-
ated models, which can increase the space complexity of the search. However,
the technique based on branching heuristics is also successfully used for mcs
enumeration in the original smt-based approach.

6 Experimental Evaluation

6.1 Implementation and Setup

We implemented the encodings proposed in Section 4 in a simple Python script.
In the following experiments, these two encodings are denoted as asp and aspma.
To enumerate their minimal stable models, we have used the state-of-the-art asp
solver Clingo [7] in version 5.5.1, which supports both asp modulo acyclicity and
also Boolean model minimization by modified branching heuristics.

For comparison, we used the smt-based mcs enumerator SMT-PGFDS [4],
which is implemented as a Python tool that produces the smt encoding of the
fpg and uses the smt solver MathSAT 5 [6] to enumerate its minimal models.
In the experiments below, the approach is denoted as smt.

We used several families of fpg benchmarks, which are described in §6.2. We
ran all the experiments on a cluster of 13 nodes with Intel Xeon CPU E5520
@ 2.27GHz cpus. We used a 30 minutes timeout and 8 GiB of ram. All the
measured times are wall-times. Additional data for the experiments are available
from https://es-static.fbk.eu/people/griggio/papers/lpnmr2022.html.

6.2 Benchmarks

We compared the three encodings (asp, aspma, smt) on various fpg benchmarks
from the literature. We do not restrict the evaluation only to cyclic fpgs, where
the three encodings differ, but also use benchmarks without cycles, which do not

3 This can be achieved, e.g, by adding a directive #show fail local/1. and calling
clingo --project --heuristic=Domain --dom-mod=5,16 --enum-mod=domRec 0.

https://es-static.fbk.eu/people/griggio/papers/lpnmr2022.html

require the causality constraints and can thus be encoded in a purely Boolean
way. This allows us to compare the performance of the underlying solvers (i.e.,
Clingo, MathSAT 5) for purely Boolean search.

Acyclic We used acyclic benchmarks that result from encoding acyclic redun-
dancy architectures extended by triple modular redundancy (tmr) with vot-
ers [3]. In particular, these benchmarks consist of families linear, rectangular,
and redarch-random-acycl. The linear benchmark family consists of linear-
shaped architectures of sizes between 1 and 200, extended by one to three
voters; each architecture of size n corresponds to a fpg with 3n + (#voters ·
n) components. Similarly, rectangular benchmarks come from encoding of
rectangular-shaped redundancy architectures of sizes between 1 and 200 and
one to three voters and yield fpgs with 6n+2 ·(#voters ·n) components. Family
redarch-random-acycl consists of fpg encodings of randomly generated acyclic
tmr architectures.

Cyclic As cyclic benchmarks, we first used the benchmark family cav21, which
is an extension of a benchmark set used to evaluate the performance of the
smt-based fpg analysis. It is generated exactly the same way as in the original
paper [4] and consists of randomly generated fpgs of size between 500 and 1500,
which have similar distribution of degrees as our proprietary industrial systems.

Second, we also use cyclic benchmarks that result from encoding cyclic re-
dundancy architectures [3]. In particular, these benchmarks consist of three fami-
lies: ladder, radiator, and redarch-random-cycl. Ladder-shaped benchmarks
come from architectures of size between 1 and 200 and radiator-shaped bench-
marks come from architectures of size between 1 and 50. Both these architecture
shapes of size n yield an fpg with 6n+2 ·(#voters ·n) components. However, the
redundancy architectures differ in the shape of the dependency graph; whereas
ladder benchmarks contain a linear number of cycles, radiator benchmarks
contain an exponential number of cycles. Finally, redarch-random-cycl family
consists of fpg encodings of randomly generated cyclic tmr architectures.

6.3 Results

This subsection presents mcs enumeration times for the compared encodings on
the benchmarks. Note that all plots show times on a logarithmic scale.

Acyclic The mcs enumeration times for the smt and asp encodings for linear
and rectangular benchmarks are shown in Figure 1a. The plot does not show
the runtimes of aspma encoding, because for benchmarks without cycles, it is
identical to asp. For the simple benchmarks, asp-based enumeration performs
slightly better, but the difference vanishes with the increasing hardness of the
benchmarks, i.e., going to rectangular structure or adding voters.

The comparison of mcs enumeration times of smt and asp encodings for
redarch-random-acycl benchmarks is shown in Figure 1b. For fpgs coming

0.1

1

10

100

1000

0.1 1 10 100 1000
Time asp (s)

T
im

e
sm

t (
s)

Family
linear
rectangular

(a) linear and rectangular

0.1

1

10

0.1 1 10
Time asp (s)

T
im

e
sm

t (
s)

(b) redarch-random-acycl

Fig. 1: Scatter plots of solving time on acyclic benchmarks.

0.1

1

10

100

1000

0.1 1 10 100 1000
Time asp (s)

T
im

e
sm

t (
s)

(a) smt vs asp

0.1

1

10

100

1000

0.1 1 10 100 1000
Time asp (s)

T
im

e
as

pm
a

(s
)

(b) asp vs aspma

0.1

1

10

100

1000

0.1 1 10 100 1000
Time aspma (s)

T
im

e
sm

t (
s)

(c) smt vs aspma

Fig. 2: Scatter plots of solving time on cav21 cyclic benchmarks.

from random redundancy architectures, asp provides 2 to 3-times better perfor-
mance.

Cyclic The comparison of mcs enumeration times of all three encodings for
cav21 benchmarks is shown in Figure 2. The asp-based breaking of self-supporting
propagation cycles is beneficial in comparison to the previously proposed smt-
based encoding; for some benchmarks, the asp-based techniques provide 10-times
and even better performance. The performance of aspma is significantly worse
than the purely asp-based one on a non-trivial number of the benchmarks.

Figures 3 and 4 show the performance of the three approaches on the ladder
and radiator benchmarks. On the ladder-shaped benchmarks, the asp-based
approach provides substantial speedup with respect to the smt-based approach.
Interestingly, the aspma approach performs worse than the purely asp-based
approach and even comparable to the smt-based one for the more complicated
systems with more voters.

The situation is more interesting on radiator benchmarks, which are sub-
stantially harder as they contain a larger number of cycles. While the smt-based
approach provides a better performance for architectures with two voters, the
asp-based approach provides a better performance for even harder architectures

1 2 3

0 50 100 150 200 0 50 100 150 200 0 50 100 150 200
0.01
0.1

1
10

100
1000

Architecture size

T
im

e
(s

) Solver
asp
aspma
smt

Fig. 3: Solving time on ladder-shaped cyclic benchmarks. Divided according to
the number of voters per one reference module.

1 2 3

0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50
0.01
0.1

1
10

100
1000

Architecture size

T
im

e
(s

) Solver
asp
aspma
smt

Fig. 4: Solving time on radiator-shaped cyclic benchmarks. Divided according to
the number of voters per one reference module.

with three voters. Nevertheless, the benchmarks with two and three voters are
difficult for all of the approaches and pose a good target for future research.

Finally, Figure 5 compares the three approaches on the family of benchmarks
redarch-random-cycl. The purely asp-based encoding provides significantly
better performance both than smt and aspma. The difference can be even in
several orders of magnitude. Nevertheless, there are a few benchmarks where
the smt-based encoding provides better performance.

In total, the approach based on asp, which we introduced in this paper,
provides better performance for most of the benchmarks used; the difference is
sometimes even in several orders of magnitude. Interestingly, the approach based

0.1

1

10

100

1000

0.1 1 10 100 1000
Time asp (s)

T
im

e
sm

t (
s)

(a) smt vs asp

0.1

1

10

100

1000

0.1 1 10 100 1000
Time asp (s)

T
im

e
as

pm
a

(s
)

(b) asp vs aspma

0.1

1

10

100

1000

0.1 1 10 100 1000
Time aspma (s)

T
im

e
sm

t (
s)

(c) smt vs aspma

Fig. 5: Scatter plots of solving time on redarch-random-cycl cyclic benchmarks.

on aspma, which uses a dedicated acyclicity solver, does not bring a significant
benefit in comparison to the previously introduced solver based on smt and is
mostly inferior to our purely asp-based encoding.

7 Conclusions and Future Work

We investigated the effectiveness of Answer Set Programming in the analysis of
fault propagation with cyclic dependencies, an important problem in the design
of critical systems. We propose two asp approaches: in the first one, acyclicity
is enforced by means of encoding constraints, while in the second we rely on asp
modulo acyclicity. The experimental evaluation shows that the asp encoding has
significant advantages over the state-of-the-art smt encoding. We also see that,
quite surprisingly, asp modulo acyclicity does not yield the expected results.

In the future we will investigate in detail why the asp-based encoding is
superior to the smt-based one and whether the observation can be leveraged
to improve performance of smt solvers. We will also investigate precise compu-
tational complexity of decision problems related to fault propagation analysis.
Finally, we will explore extensions of the asp approach to deal with fault prop-
agation under timing constrains, partial observability, and with dynamic fault
degradation structures with recovery.

References

1. Clark W. Barrett, Roberto Sebastiani, Sanjit A. Seshia, and Cesare Tinelli. Sat-
isfiability modulo theories. In Armin Biere, Marijn Heule, Hans van Maaren, and
Toby Walsh, editors, Handbook of Satisfiability, pages 825–885. IOS Press, 2009.

2. Jori Bomanson, Martin Gebser, Tomi Janhunen, Benjamin Kaufmann, and Torsten
Schaub. Answer set programming modulo acyclicity. Fundam. Inform., 147(1):63–
91, 2016.

3. Marco Bozzano, Alessandro Cimatti, Alberto Griggio, and Martin Jonáš. Effi-
cient analysis of cyclic redundancy architectures via boolean fault propagation. In
TACAS, volume 13244 of LNCS. Springer, 2022.

4. Marco Bozzano, Alessandro Cimatti, Anthony Fernandes Pires, Alberto Griggio,
Martin Jonáš, and Greg Kimberly. Efficient SMT-Based Analysis of Failure Prop-
agation. In CAV, volume 12760 of LNCS, pages 209–230. Springer, 2021.

5. Gerhard Brewka, James P. Delgrande, Javier Romero, and Torsten Schaub. asprin:
Customizing answer set preferences without a headache. In AAAI, pages 1467–1474.
AAAI Press, 2015.

6. Alessandro Cimatti, Alberto Griggio, Bastiaan Joost Schaafsma, and Roberto Se-
bastiani. The MathSAT5 SMT solver. In TACAS, volume 7795 of LNCS, pages
93–107. Springer, 2013.

7. Martin Gebser, Roland Kaminski, Benjamin Kaufmann, and Torsten Schaub. Multi-
shot ASP solving with clingo. CoRR, abs/1705.09811, 2017.

8. Martin Gebser, Benjamin Kaufmann, and Torsten Schaub. Advanced conflict-driven
disjunctive answer set solving. In IJCAI, 2013.

9. Emanuele Di Rosa, Enrico Giunchiglia, and Marco Maratea. Solving satisfiability
problems with preferences. Constraints An Int. J., 15(4):485–515, 2010.

	 Analysis of Cyclic Fault Propagation via ASP

