
A Simple and Flexible Way of Computing Small
Unsatisfiable Cores in SAT Modulo Theories

Alessandro Cimatti1, Alberto Griggio2, and Roberto Sebastiani2

1 ITC-IRST, Povo, Trento, Italy. cimatti@itc.it
2 DIT, Università di Trento, Italy. {griggio,rseba}@dit.unitn.it

Abstract. Finding small unsatisfiable cores for SAT problems has re-
cently received a lot of interest, mostly for its applications in formal ver-
ification. Surprisingly, the same problem in the context of SAT Modulo
Theories (SMT) has instead received very little attention in the litera-
ture; in particular, we are not aware of any work aiming at producing
small unsatisfiable cores in SMT.
The purpose of this paper is to fill the gap in this area, by proposing
a novel approach for computing small unsat cores in SMT. The main
idea is to combine an SMT solver with an external propositional core
extractor: the SMT solver produces the theory lemmas found during the
search; the core extractor is then called on the boolean abstraction of
the original SMT problem and of the theory lemmas. This results in
an unsatisfiable core for the original SMT problem, once the remaining
theory lemmas have been removed.
The approach has several advantages: it is extremely simple to implement
and to update, and it can be interfaced with every propositional core
extractor in a plug-and-play way, so that to benefit for free of all unsat-
core reduction techniques which have been or will be made available.

1 Motivations and goals

In the last decade we have witnessed an impressive advance in the efficiency of
SAT techniques, which has brought large and previously intractable problems at
the reach of state-of-the-art SAT solvers. In particular, and due to its importance
in formal verification, the problem of finding small unsatisfiable cores in SAT —
i.e., unsatisfiable subsets of unsatisfiable sets of clauses— has been addressed by
many authors in the recent years [8, 9, 11, 4, 7, 10].

The formalism of plain propositional logic, however, is often not suitable or
expressive enough for representing many interesting real-world problems, which
are more naturally expressible as satisfiability problems in decidable first-order
theories —Satisfiability Modulo Theories, SMT. Efficient SMT solvers have been
developed in the last five years, called lazy SMT solvers, which combine DPLL
with ad-hoc decision procedures for many theories of interest (e.g., [6, 1, 2, 5]).

Surprisingly, the problem of finding unsatisfiable cores in SMT has received
virtually no attention in the literature. Although some SMT tools do compute
unsat cores, this is done either as a byproduct of the more general task of pro-
ducing proofs, or by modifying the embedded DPLL solver so that to apply

basic propositional techniques to produce an unsat core. In particular, we are
not aware of any work aiming at producing small unsatisfiable cores in SMT.

In this paper we present a novel approach addressing this problem. The main
idea is to combine an SMT solver with an external propositional core extractor.
The SMT solver stores and returns the theory lemmas it had to prove in order to
refute the input formula; the external core extractor is then called on the boolean
abstraction of the original SMT problem and of the theory lemmas. The resulting
boolean unsatisfiable core is cleaned from (the boolean abstraction of) all theory
lemmas, and it is refined back into a subset of the original clauses. The result is
an unsatisfiable core of the original SMT problem.

Although simple in principle, the approach is conceptually interesting: basi-
cally, the SMT solver is used to dynamically lift the suitable amount of theory
information to the boolean level. Furthermore, the approach has several advan-
tages in practice: first, it is extremely simple to implement and to update; second,
it is effective in finding small cores; third, the core extraction is not prone to com-
plex SMT reasoning; finally, it can be interfaced with every propositional core
extractor in a plug-and-play manner, so that to benefit for free of all unsat-core
reduction techniques which have been or will be made available.

For lack of space, in this short version of the paper we omit many details, any
related work and the description and the results of our extensive experimental
evaluation of the approach. They can be found in the extended version of the
paper [3].

2 Background

Given a decidable first-order theory T , we call a theory solver for T , T -solver,
any tool able to decide the satisfiability in T of sets/conjunctions of ground
atomic formulas and their negations (theory literals or T -literals) in the language
of T . If the input set of T -literals µ is T -unsatisfiable, then a typical T -solver
not only returns unsat, but it also returns the subset η of T -literals in µ which
was found T -unsatisfiable. (η is hereafter called a theory conflict set, and ¬η
a theory conflict clause.) If µ is T -satisfiable, then T -solver not only returns
sat, but it may also be able to discover one (or more) deductions in the form
{l1, ..., ln} |=T l, s.t. {l1, ..., ln} ⊆ µ and l is an unassigned T -literal. If so, we call
(
∨n

i=1 ¬li ∨ l) a theory-deduction clause. Importantly, notice that both theory-
conflict clauses and theory-deduction clauses are valid in T . We call them theory
lemmas or T -lemmas.

Satisfiability Modulo (the) Theory T (SMT (T)) is the problem of deciding the
satisfiability of boolean combinations of propositional atoms and theory atoms.
We call an SMT (T) tool any tool able to decide SMT (T). Notice that, unlike a
T -solver, an SMT (T) tool must handle also boolean connectives.

Hereafter we adopt the following terminology and notation. The bijective
function T 2P (“theory-to-propositional”), called boolean abstraction, maps propo-
sitional variables into themselves, ground T -atoms into fresh propositional vari-
ables, and is homomorphic w.r.t. boolean operators and set inclusion. The func-

tion P2T (“propositional-to-theory”), called refinement, is the inverse of T 2P.
The symbols ϕ, ψ denote T -formulas, and µ, η denote sets of T -literals; ϕp, ψp

denote propositional formulas, µp, ηp denote sets of propositional literals (i.e.,
truth assignments) and we often use them as synonyms for the boolean abstrac-
tion of ϕ, ψ, µ, and η respectively, and vice versa (e.g., ϕp denotes T 2P(ϕ),
µ denotes P2T (µp)). If T 2P(ϕ) |= ⊥, then we say that ϕ is propositionally
unsatisfiable.

2.1 Lazy techniques for SMT

The idea underlying every lazy SMT (T) procedure is that (a complete set of)
the truth assignments for the propositional abstraction of ϕ are enumerated and
checked for satisfiability in T ; the procedure either returns sat if one T -satisfiable
truth assignment is found, or returns unsat otherwise.

A simplified schema of a lazy SMT (T) procedure is as follows. The propo-
sitional abstraction ϕp of the input formula ϕ is given as input to a modified
version of a DPLL solver, and when a satisfying assignment µp is found, the
refinement µ of µp is fed to the T -solver; if µ is found T -consistent, then ϕ
is T -consistent; otherwise, T -solver returns the conflict set η which caused the
T -inconsistency of P2T (µp). Then the clause ¬ηp is added in conjunction to ϕp,
either temporarily or permanently (T -learning), and the algorithm backtracks
up to the highest point in the search where a literal can be unit-propagated on
¬ηp (T -backjumping).

Two important optimizations are early pruning and theory propagation: the
T -solver is invoked also on (the refinement of) an intermediate assignment µ:
if it is found T -unsatisfiable, then the procedure can backtrack, since no exten-
sion of µ can be T -satisfiable; if not, and if the T -solver performs a deduction
{l1, ..., ln} |=T l s.t. {l1, ..., ln} ⊆ µ, then T 2P(l) can be unit-propagated, and
the boolean abstraction of the T -lemma (

∨n
i=1 ¬li ∨ l) can be learned.

The above schema is a coarse abstraction of the procedures underlying all the
state-of-the-art lazy SMT (T) tools like, e.g., BarceLogic, CVCLite, Math-
SAT, Yices. The interested reader is pointed to, e.g., [6, 1, 2, 5], for details and
further references.

2.2 Techniques for unsatisfiable-core extraction in SAT

Given an unsatisfiable (propositional) CNF formula ϕ, we say that an unsatisfi-
able CNF formula ψ is an unsatisfiable core of ϕ iff ϕ = ψ∧ψ′ for some (possibly
empty) CNF formula ψ′. Intuitively, ψ is a subset of the clauses in ϕ causing the
unsatisfiability of ϕ. An unsatisfiable core ψ is minimal iff the formula obtained
by removing any of the clauses of ψ is satisfiable. A minimum unsat core is a
minimal unsat core with the smallest possible cardinality.

In the last few years, several algorithms for computing small [11], minimal
[7, 4] or minimum [8–10] unsatisfiable cores of propositional formulas have been
proposed. For lack of space, we can not provide details here, and we refer to the
extended version [3] of the paper for a detailed description.

〈SatValue,Clause set〉 T -Unsat Core(Clause set ϕ) { // ϕ is {C1, ..., Cn}
if (T -DPLL(ϕ) == sat) then return 〈sat,∅〉;
// D1, ..., Dk are the T -lemmas stored by T -DPLL
ψp=Boolean Unsat Core(T 2P({C1, ..., Cn, D1, ..., Dk}));
// ψp is T 2P({C′1, ..., C′m, D′1, ..., D′j}));
return 〈unsat,{C′1, ..., C′m}〉; }

Fig. 1. Schema of the T -Unsat Core algorithm.

2.3 Techniques for unsatisfiable-core extraction in SMT

To the best of our knowledge, there is no published work in the literature de-
voted to the computation of unsatisfiable cores in SMT. However, at least three
SMT solvers support unsat core generation with techniques adapted from SAT.
CVCLite [1] and a recent extension of MathSAT [2] can compute unsatisfiable
cores as a byproduct of the generation of proofs, in a way similar to that in [11].
Yices [5] instead uses the following technique: a selector variable is introduced
for each original clause, which is forced to false before starting the search. In this
way, when a conflict at decision level zero is found, the conflict clause contains
only selector variables, and the unsat core returned is the union of the clauses
whose selectors appear in such conflict clause.

We remark the fact that none of these solvers aims at producing minimal or
minimum unsat cores, nor does anything to reduce their size.

3 A novel approach to building unsat cores in SMT

We present a novel approach in which the unsatisfiable core is computed a pos-
teriori w.r.t. the execution of the SMT solver, and only if the formula has been
found T -unsatisfiable, by means of an external (and possibly optimized) propo-
sitional unsat-core extractor.

In the following we assume that a lazy SMT (T) procedure has been run
over a T -unsatisfiable SMT (T) CNF formula ϕ =def {C1, ..., Cn}, and that
D1, ..., Dk denote all the T -lemmas, both theory-conflict and theory-deduction
clauses, which have been returned by the T -solver during the run.

Our novel approach is based on two simple facts.

(i) Under the assumptions above, the conjunction of ϕ with all the T -lemmas
D1, ..., Dk is propositionally unsatisfiable: T 2P(ϕ ∧∧n

i=1Di) |= ⊥.
(ii) As T -lemmas Di are valid in T , they do not affect the T -satisfiability of a

formula: (ψ ∧Di) |=T ⊥ ⇐⇒ ψ |=T ⊥.

These facts suggest the novel algorithm represented in Figure 1. The proce-
dure T -Unsat Core receives as input a set of clauses ϕ =def C1, ..., Cn and it
invokes on it a lazy SMT (T) tool T -DPLL, which is instructed to store some-
where the T -lemmas returned by T -solver, namely D1, ..., Dk. If T -DPLL returns

sat, then the whole procedure returns sat. Otherwise, the boolean abstraction
of {C1, ..., Cn, D1, ..., Dk}, which is inconsistent because of (i), is passed to an
external tool Boolean Unsat Core, which is able to return the boolean unsat
core ψp of the input. By construction, ψp is the boolean abstraction of a clause
set {C ′1, ..., C ′m, D′1, ..., D′j} s.t. {C ′1, ..., C ′m} ⊆ {C1, ..., Cn} and {D′1, ..., D′j} ⊆
{D1, ..., Dk}. As ψp is unsatisfiable, then {C ′1, ..., C ′m, D′1, ..., D′j} is T -unsat.
By (ii), the T -valid clauses D′1, ..., D

′
j have no role in the T -unsatisfiability of

{C ′1, ..., C ′m, D′1, ..., D′j}, so that the procedure returns unsat and the T -unsat
core {C ′1, ..., C ′m}.

The procedure can be implemented very simply by modifying the SMT solver
so that to store the T -lemmas 3 —if it doesn’t already— and by interfacing
it with some state-of-the-art boolean unsat-core extractor used as an external
black-box device (e.g., by a simple exchange of files in DIMACS format). More-
over, if the SMT solver can provide the set of all T -lemmas as output, then the
whole procedure may reduce to a control device interfacing with both the SMT
solver and the boolean core extractor as black-box external devices.

3.1 Discussion

Though based on an extremely simple concept, the newly-proposed approach is
appealing for several reasons.

First, it is extremely simple to implement and update. The building of un-
sat cores is demanded to an external device, which is fully decoupled from the
internal DPLL-based enumerator. Therefore, there is no need to implement any
internal unsat-core constructor nor to modify the embedded boolean device. Ev-
ery possible external device can be interfaced in a plug-and-play manner by
simply exchanging a couple of DIMACS files.

Second, from the perspective of effectiveness in reducing the size of unsat
cores, every original clause which the boolean unsat-core device is able to drop
is dropped also in the final formula. Therefore, this technique exploits for free
all unsat-core reduction techniques which have been and will be conceived in the
SAT community.

One potential drawback of this approach is the fact that a SMT (T) solver is
required to store all the T -lemmas returned by the T -solver. However, this is not
a real problem. In fact, unlike with plain SAT, in lazy SMT the computational
effort is typically dominated by the search in the theory T , so that the number
of clauses that can be stored with a reasonable amount of memory is typically
much bigger than the number of calls to the T -solver which can overall be accom-
plished within a reasonable amount of time. In our experience, even the hardest
SMT formulas at the reach of current lazy SMT solvers rarely need generating
more than 105 T -lemmas, which have very reasonable memory requirements to
store. (E.g., notice that the default choice in MathSAT is to learn all T -lemmas

3 Notice that here “storing” does not mean “learning”: the SMT solver is not required
to add the T -lemmas to the formula during the search. This imposes no constraint
on the lazy strategy adopted.

permanently anyway, and we have never encountered memory overload problems
due to this fact.)

Finally, one limitation of this approach is that the resulting T -unsatisfiable
core is not guaranteed to be minimal, even if Boolean Unsat Core returns mini-
mal boolean unsatisfiable cores. However, to the best of our knowledge, not only
the issue of the minimality of unsat cores in SMT has never been addressed or
even discussed before, but also this is the first time that the problem of the size
of unsat cores in SMT is addressed.

4 Conclusions

We have presented a novel approach to generating small unsatisfiable cores in
SMT, that computes them a posteriori, relying on an external propositional un-
sat core extractor. The technique is very simple in concept, and straightforward
to implement and update. Moreover, it benefits for free of all the advancements
in propositional unsat core computation. Our experimental results, available in
the extended version [3], have shown that, by using different core extractors, it
is possible to reduce significantly the size of cores and to trade core quality for
speed of execution (and vice versa), with no implementation effort.

References

1. C. Barrett and S. Berezin. CVC Lite: A New Implementation of the Cooperating
Validity Checker. In Proc. CAV’04, 2004.

2. M. Bozzano, R. Bruttomesso, A. Cimatti, T. Junttila, P.van Rossum, S. Schulz,
and R. Sebastiani. An incremental and Layered Procedure for the Satisfiability of
Linear Arithmetic Logic. In Proc. TACAS’05, 2005.

3. A. Cimatti, A. Griggio, and R. Sebastiani. A Simple and Flexible Way of Com-
puting Small Unsatisfiable Cores in SAT Modulo Theories. Technical report, DIT,
Univ. of Trento, 2007. Extended version. Available at http://dit.unitn.it/
∼griggio/papers/sat07 extended.pdf.

4. N. Dershowitz, Z. Hanna, and A. Nadel. A Scalable Algorithm for Minimal Un-
satisfiable Core Extraction. In Proc. SAT’06, 2006.

5. B. Dutertre and L. de Moura. A Fast Linear-Arithmetic Solver for DPLL(T). In
Proc. CAV’06, 2006.

6. H. Ganzinger, G. Hagen, R. Nieuwenhuis, A. Oliveras, and C. Tinelli. DPLL(T):
Fast decision procedures. In Proc. CAV’04, 2004.

7. R. Gershman, M. Koifman, and O. Strichman. Deriving Small Unsatisfiable Cores
with Dominators. In Proc. CAV’06, 2006.

8. I. Lynce and J. P. Marques Silva. On computing minimum unsatisfiable cores. In
Proc. SAT’04, 2004.

9. M. N. Mneimneh, I. Lynce, Z. S. Andraus, J. P. Marques Silva, and K. A. Sakallah.
A Branch-and-Bound Algorithm for Extracting Smallest Minimal Unsatisfiable
Formulas. In Proc. SAT’05, 2005.

10. J. Zhang, S. Li, and S. Shen. Extracting Minimum Unsatisfiable Cores with a
Greedy Genetic Algorithm. In Proc. ACAI’06, 2006.

11. L. Zhang and S. Malik. Extracting small unsatisfiable cores from unsatisfiable
boolean formula. In Proc. SAT’03, 2003.

