
Stochastic Local Search for SMT: a Preliminary Report

(extended abstract) ∗

Alberto Griggio, Roberto Sebastiani, and Silvia Tomasi
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Abstract

A popular approach to SMT is based on the integration of theory-
specific decision procedures with a SAT solver based on DPLL. In pure
SAT, however, stochastic local-search (SLS) procedures sometimes out-
perform DPLL on satisfiable instances, in particular when dealing with
unstructured problems. In this paper, we report on preliminary exper-
iments about replacing DPLL with an SLS-based SAT solver in an
SMT context.

1 Introduction

A popular approach to SMT is based on the integration of a DPLL SAT
solver and of a decision procedure able to handle sets of atomic constraints
in the underlying theory T (T -solver). In pure SAT, however, stochastic
local-search (SLS) [5] procedures sometimes outperform DPLL on satisfiable
instances, in particular when dealing with unstructured problems. There-
fore, it is a natural research question to wonder whether SLS can be exploited
successfully also inside SMT tools.

The purpose of this paper is to start investigating this issue. First, we
present an algorithm integrating a Boolean SLS solver (based on the Walk-
SAT paradigm [5, 8, 6, 4]) with a T -solver, resulting in a basic SLS-based
SMT solver. Second, we introduce a group of techniques aimed at improving
the synergy between the Boolean and the T -specific component, and discuss
the differences between the integration of T -solvers with a DPLL-based and
a SLS-based SAT solver. Finally, we perform a preliminary experimental
evaluation of our implementation (based on the integration of the UBCSAT
[9] SLS platform with the LA(Q)-solver [3] of MathSAT [1]) by comparing
it against MathSAT, a state-of-the-art DPLL-based SMT solver, on both
structured industrial problems coming from the SMT-LIB and randomly-
generated unstructured problems.

∗The second and third authors are partly supported by SRC under GRC Cus-
tom Research Project 2009-TJ-1880 WOLFLING, and by MIUR under PRIN project
20079E5KM8 002.
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From this preliminary analysis we have that the performance of the SLS-
based tool (i) is far from that of the DPLL-based one on SMT-LIB problems
and (ii) is comparable on random problems.

2 Background

2.1 Stochastic Local Search for SAT

Local search (LS) algorithms [5] are widely used for solving hard combina-
torial search problems. The idea behind LS is to inspect the search space
of a given problem instance starting at some position and then iteratively
moving from the current position to a neighboring one where each move is
determined by a decision based on information about the local neighbor-
hood. LS algorithms making use of randomized choices during the search
process are called Stochastic Local search (SLS) algorithms. SLS algorithms
have been successfully applied to the solution of manyNP-complete decision
problems, including SAT. Notice, however, that SLS algorithms typically do
not guarantee that eventually an existing solution is found, so that they
cannot verify the unsatisfiability of a problem.

SLS algorithms for SAT typically work with a CNF input formula (namely
ϕ) and share a common high-level schema: (i) they initialize the search by
generating an initial truth assignment (typically at random); (ii) they iter-
atively select one variable and flip it within the current truth assignment.
Flips are repeated until either the current truth assignment satisfies the for-
mula ϕ or a maximum number of flips (max flips) is reached. This process
is repeated as needed up to a maximum of max tries times. The main dif-
ference in SLS SAT algorithms is typically given by the different strategies
applied to select the variable to be flipped.

2.2 WalkSAT Algorithms

WalkSAT is a popular family of SLS-based SAT algorithms. The schema
of such algorithms is shown in Algorithm 1. Initially, a complete truth as-
signment µ for the variables of the input problem ϕ is selected by Initial-
TruthAssignment according to some heuristic criterion (e.g., uniformly at
random). If this assignment satisfies the formula, the algorithm terminates.
Otherwise, a variable is selected and flipped in µ using a two-stage process.
In the first stage, a currently-unsatisfied clause c is selected by ChooseUn-
satisfiedClause according to some heuristic criterion (e.g., uniformly at
random). In the second stage, one of the variables occurring in the selected
clause c is flipped by NextTruthAssignment according to some mixed
greedy/random heuristic criterion, so that to generate another truth assign-
ment. The procedure is repeated until either a solution is found, or the limit
of number of tries is reached.
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Algorithm 1 WalkSAT (ϕ)
Require: CNF formula ϕ, max tries, max flips
1: for i = 1 to max tries do
2: µ← InitialTruthAssignment(ϕ)
3: for j = 1 to max flips do
4: if (µ |= ϕ) then
5: return sat
6: else
7: c← ChooseUnsatisfiedClause(ϕ, µ)
8: µ← NextTruthAssignment(ϕ, c, µ)
9: end if

10: end for
11: end for
12: return unknown

Over the last years, several variants of the basic WalkSAT algorithm
have been proposed [8, 6, 4], which differ mainly for the different heuristics
used for the functions described above —in particular on the degree of greed-
iness and randomness and in the criteria used for selecting the variable to
flip in c within NextTruthAssignment. Currently, the best performing
WalkSAT-based algorithm for SAT seems to be Adaptive Novelty+ [4]. For
further details, we refer the reader to [5].

3 Stochastic Local Search for SMT

We start from a simple observation: from the perspective of a SAT solver, an
SMT problem instance ϕ can be seen as the problem of solving a partially-
invisible SAT formula ϕp ∧ τp, s.t. the “visible” part ϕp is the Boolean
abstraction of ϕ and the “invisible” part τp is (the Boolean abstraction of)
the set of the T -lemmas providing the obligations induced by the theory T on
the atoms of ϕ. (We use the superscript p to denote the Boolean abstraction
of a T -formula.) To this extent, a traditional “lazy” SMT solver can be
seen as a DPLL solver which knows ϕp but not τp: whenever a model µp

for ϕp is found, it is passed to a T -solver which knows τp and hence checks
if µp falsifies τp: if this is the case, it returns one clause cp in τp which is
falsified by µp, which is then used by DPLL to drive the future search and
is optionally added to ϕp.

We considered the above observation to develop a procedure integrat-
ing a T -solver into a SLS algorithm of the WalkSAT family (WalkSMT
hereafter).

3.1 A basic WalkSMT procedure
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Algorithm 2 WalkSMT (ϕ)
Require: SMT(T ) CNF formula ϕ, max tries, max flips

1: if (T -preprocess (ϕ) == conflict) then
2: return unsat
3: end if
4: for i = 1 to max tries do
5: µp ← InitialTruthAssignment (ϕp)
6: for j = 1 to max flips do
7: if (µp |= ϕp) then
8: 〈status, cp〉 ← T − solver(ϕp, µp)
9: if (status == sat) then

10: return sat
11: end if
12: cp ← Unit-Simplification(ϕp, cp)
13: ϕp ← ϕp ∧ cp

14: µp ← NextTruthAssignment (ϕp, cp, µp)
15: else
16: cp ← ChooseUnsatisfiedClause (ϕp, µp)
17: µp ← NextTruthAssignment (ϕp, cp, µp)
18: end if
19: end for
20: end for
21: return unknown

A high-level description of the pseudo-code of WalkSMT is shown in Algo-
rithm 2. (We present first a basic version WalkSMT, in which we tem-
porarily ignore steps 1-3 and 12-13, which we will describe in §3.2, to-
gether with other enhancements.) WalkSMT takes as input a SMT(T )
CNF formula and applies a WalkSAT scheme to its Boolean abstraction
ϕp. InitialTruthAssignment, ChooseUnsatisfiedClause and Next-
TruthAssignment are the functions described in §2.2. (Notice that their
underlying heuristic vary with the different variants of WalkSAT adopted.)

Ignoring steps 1-3 and 12-13, the only significant difference wrt. Algo-
rithm 1 is in steps 7-14. Whenever a total model µp is found s.t. µp |= ϕp,
it is passed to T -solver. If (the set of T -literals corresponding to) µp is T -
satisfiable (i.e., µp |= ϕp∧τp) the procedures ends returning sat. Otherwise,
T -solver returns conflict and a T -lemma cp. Notice that this corresponds
to say that µp 6|= ϕp∧τp, and that cp is one of the (possibly-many) clauses in
ϕp ∧ τp which are falsified by µp. Thus, cp is used by NextTruthAssign-
ment as “selected” unsatisfied clause to drive the flipping of the variable.
To this extent, T -solver plays the role of ChooseUnsatisfiedClause on
ϕp ∧ τp when no unsatisfied clause is found in ϕp.
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3.2 Enhancements to the basic WalkSMT procedure

The WalkSMT algorithm described above is very simplistic, and can be
optimized in several ways. In this section, we briefly describe some of the
most significant optimizations that we have investigated.
Preprocessing. (Steps 1-3.) Before entering the main WalkSMT routine,
we apply a preprocessing step to the input formula ϕ in order to make it
simpler to solve. First, we perform a step of unit propagation, by substitut-
ing each literal occurring as a unit clause in ϕ with true, repeating this
step until a fixpoint is reached, and finally by re-adding to ϕ the conjunc-
tion of all non-propositional unit literals eliminated. (If during this process
one of the clauses of ϕ becomes empty, the algorithm can exit returning
unsat.) Second, we apply static learning [7], which augments the input for-
mula with short T -lemmas generated without invoking the T -solver, having
the purpose of detecting a priori in a fast manner obviously T -inconsistent
assignments to T -atoms.
Learning. (Step 13.) The second important optimization is that of learning
the T -lemmas generated by the T -solver, as is done in DPLL-based SMT
solvers, so that to avoid finding the same T -conflict (which might be quite
expensive) multiple times.
Unit simplification. (Step 12.) Before learning a T -lemma, we remove
from it (setting them to true) all the literals which occur as unit clauses in
the (preprocessed) input problem.
Filtering the assignments given to T -solvers. In order to reduce the
work that T -solvers have to do, we apply some standard filtering techniques
to the current truth assignment before invoking the T -solver, such as pure
literal filtering and ghost literal filtering (see [7]). We use a two-stage process
to compute the set of ghost literals which will be ignored by the T -solver.
In the first stage, we search for all the literals whose flip within the current
assignment µp does not falsify any clause (no flip is performed in this stage).
They are called candidate ghost literals. In the second stage, for each candi-
date ghost literal l we check again whether by flipping l no clause becomes
unsatisfied. If yes, l is a ghost literal and we flip it within µp to proceed
with the evaluation of other candidates. Otherwise, l is not a ghost literal.
Multiple learning. Unlike with DPLL-based SMT solvers, which typically
use some form of early pruning to check partial truth assignments for T -
consistency, in an SLS-based approach T -solvers operate always on complete
truth assignments. In this setting, a truth assignment may be T -inconsistent
for several different reasons, often independent from each another. This is
the idea at the basis of our multiple learning technique, which allows for
learning more than one T -lemma for every T -inconsistent assignment. In
particular, when we find a conflict set η the (unit simplified) T -lemma ¬η is
used to compute a sub-assignment µ′ ⊂ µ, on which the T -solver is invoked
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again to find a new conflict set. The sub-assignment µ′ is computed by
removing the variables occurring in the current (unit simplified) T -lemma
¬η from µ. This process is repeated until no conflict set is found. We then
learn all the T -lemmas generated during the process.

3.3 Efficient T -solvers for local search

In DPLL-based SMT solvers, the interaction with T -solvers is stack-based :
the truth assignment µ is incrementally extended when performing unit
propagation, T -propagation, and when picking an unassigned literal for
branching, and it is partly undone upon backtracking, when the most-
recently-assigned literals are removed from it. Consequently, T -solvers de-
signed for interaction with DPLL are typically optimized for such stack-
based invocation. In particular, they are typically incremental (when they
have to check the consistency of a truth assignment µ′ that is an extension
of a previously-checked µ, they don’t need to restart the computation from
scratch) and backtrackable (when backtracking occurs, the most-recently-
assigned literals that need to be unassigned can be efficiently removed, and
the internal state can be efficiently restored to a previous configuration) [7].

In local search, truth assignments are not updated in a stack-based man-
ner. Rather, a new assignment µ′ is obtained from the previous one µ by
flipping an arbitrary literal (according to some heuristics). In this setting,
the conventional backtrackability feature of T -solvers is of little use, since
there is no notion of most-recently-assigned literals to remove. Instead, it
would be very desirable to be able to remove an arbitrary literal from a
T -solver without the need of resetting its internal state. Such requirement
might seem unrealistic, or at least difficult to fulfill. However, we are aware
of at least two state-of-the-art T -solvers that have this capability: the solver
for DL of [2] and the solver for LA(Q) of [3], which are therefore natural
candidates for integration with a local-search-based SAT solver.

4 Preliminary Experimental Evaluation

We have implemented the SLS-based SMT procedure described above in
our WalkSMT solver. WalkSMT was written in C++ by integrating the
UBCSAT [9] SLS-based SAT solver (using the Adaptive Novelty+ variant
of the WalkSAT family) with the LA(Q)-solver of [3] that is implemented
within MathSAT 4 [1]. In this section, we evaluate the performance of
WalkSMT by comparing it against a state-of-the-art SMT solver based on
DPLL. We consider three versions of WalkSMT:

• Basic-WalkSMT, which does not include improvement techniques;

• Learning-WalkSMT, combining Basic-WalkSMT with preprocess-
ing, unit simplification and simple learning optimizations of §3.2;
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Figure 1: Comparison of different configurations of WalkSMT on SMT-
LIB instances.

• Best-WalkSMT, which extends Learning-WalkSMT with the mul-
tiple learning, pure-literal filtering and ghost-literal filtering optimiza-
tions of §3.2.

In order to minimize the performance differences due to the implementa-
tion, we adopted MathSAT as DPLL-based SMT solver for the comparison,
since, as mentioned above, WalkSMT uses the same LA(Q)-solver as Math-
SAT. Moreover, in order to better isolate the different factors that influence
the performance of a DPLL-based SMT solver, we ran MathSAT in two dif-
ferent configurations: a “full” one with all the optimizations enabled, and a
“restricted” one in which we disabled two important optimizations that are
impossible to apply in an SLS-based algorithm, namely early pruning and
T -propagation.

We performed our comparison over two distinct sets of instances, which
are described in the next two sections: the first consists of a subset of the
formulas in the SMT-LIB (www.smtlib.org), whereas the second is composed
of randomly-generated problems. All tests were executed on 2.66 GHz Xeon
machines running Linux, using a timeout of 600 seconds.

4.1 SMT-LIB Instances

In the first part of our experiments, we compare WalkSMT against Math-
SAT on a subset of the satisfiable LA(Q)-formulas (QF LRA) in the SMT-
LIB. These instances are classified as “industrial”, and they come from the
encoding of different real-world problems in formal verification, planning
and optimization. The results of the experiments are reported in Figures
1 and 2: Figure 1 shows the effects of the different optimizations we intro-
duced for the WalkSMT algorithm, whereas Figure 2 compares the best
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Figure 2: Comparison of Best-WalkSMT with the two configurations of
MathSAT on SMT-LIB instances.

configuration of WalkSMT with the two configurations of MathSAT.
The results clearly show that:

1. Learning the discovered T -lemmas is crucial for performance. Without
it, WalkSMT times out on almost all instances;

2. The optimizations described in §3.2 lead to very significant improve-
ments, sometimes by orders of magnitude;

3. Despite the improvements, the gap between WalkSMT and Math-
SAT is still huge. This is in part explained by the use of early pruning
and T -propagation within MathSAT, as Figure 2 shows. Such opti-
mizations are not possible to implement within WalkSMT, since in
local-search-based algorithms there is no concept of partial truth as-
signment, and the T -solver always operates on complete assignments.

However, even with early pruning and T -propagation turned off (right
plot of Figure 2), the performance of MathSAT is still much better
than that of WalkSMT. This is not surprising, as it reflects the well-
known fact that even for pure propositional problems DPLL-based
SAT solvers outperform SLS-based ones on industrial, structured in-
stances, where the power of Boolean Constraint Propagation can be
fully exploited.

4.2 Random Instances

In the second part of our experiments, we compare WalkSMT against
MathSAT on randomly-generated, unstructured LA(Q)-formulas. The set
consists of 3-CNF instances generated in terms of the tuple of parameters
〈m,n, a〉 where m is the number of clauses, n is the number of T -variables
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Figure 3: Comparison of different configurations of WalkSMT and Math-
SAT on randomly-generated instances with 20 theory variables and atoms
a = 30, 40, 50, 60, 70, 80.

9



and a is the number of distinct T -atoms occurring in the formula, where
each T -atom is a polynomial

∑
i cixi ≤ c0 with exactly four variables with

non-zero coefficient. Each variable xi is chosen with probability 1/n, and
the coefficients ci and the constant term c are integer numbers which are
randomly taken in the interval [−L,L] (with L = 100).

Figure 3 shows the run times of several versions of WalkSMT and
MathSAT on the generated formulas, for n = 20. Each graph shows curves
for Basic-WalkSMT, Learning-WalkSMT, Best-WalkSMT, MathSAT
and MathSAT without early pruning and T -propagation on a group of in-
stances with a fixed number a of T -atoms, for a = 30, 40, 50, 60, 70, 80. The
plots represent the execution time versus the ratio r = m/a of clauses/T -
atoms. Each point in the graphs corresponds to the median run-time of
each algorithm on 20 different instances of the same size. (For WalkSMT,
each value is itself a median value of 3 runs with different seeds.) The plots
show also the satisfiability percentage of each group of instances, defined
as the ratio between the number of satisfiable instances generated and the
total number of instances generated, for each value of r. For example, the
percentage 0.001% in the plot in the first column of the last row of Figure
3 means that we had to generate 337631 formulas (using MathSAT with a
timeout of 600 seconds) in order to obtain 20 satisfiable instances.

The results show that there is a very small difference between the per-
formance of Learning-WalkSMT and Best-WalkSMT. Moreover, unlike
with SMT-LIB formulas, on randomly-generated instances the performance
of Learning-WalkSMT, Best-WalkSMT and MathSAT is almost identi-
cal. Moreover, as with SMT-LIB instances, early pruning and T -propagation
play a very important role in the performance of MathSAT, especially on
the hardest formulas (last three plots).
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