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Abstract. We develop a framework for model checking infinite-state
systems by automatically augmenting them with auxiliary variables, en-
abling quantifier-free induction proofs for systems that would other-
wise require quantified invariants. We combine this mechanism with a
counterexample-guided abstraction refinement scheme for the theory of
arrays. Our framework can thus, in many cases, reduce inductive rea-
soning with quantifiers and arrays to quantifier-free and array-free rea-
soning. We evaluate the approach on a wide set of benchmarks from the
literature. The results show that our implementation often outperforms
state-of-the-art tools, demonstrating its practical potential.

1 Introduction

Model checking is a widely-used and highly-effective technique for automated
property checking. While model checking finite-state systems is a well-established
technique for hardware and software systems, model checking infinite-state sys-
tems is more challenging. One challenge, for example, is that proving properties
by induction over infinite-state systems often requires the use of universally
quantified invariants. While some automated reasoning tools can reason about
quantified formulas, such reasoning is typically not very robust. Furthermore,
just discovering these quantified invariants remains very challenging.

Previous work (e.g., [52]) has shown that prophecy variables can some-
times play the same role as universally quantified variables, making it possible
to transform a system that would require quantified reasoning into one that
does not. However, to the best of our knowledge, there has been no automatic
method for applying such transformations. In this paper, we introduce a tech-
nique we call counterexample-guided prophecy. During the refinement step of an
abstraction-refinement loop, our technique automatically introduces prophecy
variables, which both help with the refinement step and may also reduce the
need for quantified reasoning. We demonstrate the technique in the context of
model checking for infinite-state systems with arrays, a domain which is known
for requiring quantified reasoning. We show how a standard abstraction for arrays
can be augmented with counterexample-guided prophecy to obtain an algorithm
that reduces the model checking problem to quantifier-free, array-free reasoning.
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The paper makes the following contributions: i) we introduce an algorithm
called Prophecize which uses history and prophecy variables to target a spe-
cific term at a specific time step of an execution, producing a new transition
system that can effectively reason universally about that term; ii) we develop
an automatic abstraction-refinement procedure for arrays, which leverages the
Prophecize algorithm during the refinement step, and show that it is sound
and produces no false positives; iii) we develop a prototype implementation of
our technique; and iv) we evaluate our technique on four sets of model checking
benchmarks containing arrays and show that our implementation outperforms
state-of-the-art tools on a majority of the benchmark sets.

2 Background

We assume the standard many-sorted first-order logical setting with the usual
notions of signature, term, formula, and interpretation. A theory is a pair T =
(Σ, I) where Σ is a signature and I is a class of Σ-interpretations, the models of
T . A Σ-formula ϕ is satisfiable (resp., unsatisfiable) in T if it is satisfied by some
(resp., no) interpretation in I. Given an interpretationM, a variable assignment
s over a set of variables X is a mapping that assigns each variable x ∈ X of sort
σ to an element of σM, denoted xs. We write M[s] for the interpretation that
is equivalent to M except that each variable x ∈ X is mapped to xs. Let x be
a variable, t a term, and φ a formula. We denote with φ{x 7→ t} the formula
obtained by replacing every free occurrence of x in φ with t. We extend this
notation to sets of variables and terms in the usual way. If f and g are two
functions, we write f ◦g to mean functional composition, i.e., f ◦g(x) = f(g(x)).

Let TA be the standard theory of arrays [50] with extensionality, extended
with constant arrays. Concretely, we assume sorts for arrays, indices, and ele-
ments, and function symbols read , write, and constarr . Here and below, we use
a and b to refer to arrays, i and j to refer to array indices, and e and c to refer
to array elements, where c is also restricted to be an interpreted constant. The
theory contains the class of all interpretations satisfying the following axioms:

∀ a, i, j, e. i = j =⇒ read(write(a, j , e), i) = e ∧
i 6= j =⇒ read(write(a, j , e), i) = read(a, i)

(write)

∀ a, b. (∀ i. read(a, i) = read(b, i)) =⇒ a = b (ext)

∀ i. read(constarr(c), i) = c (const)

Symbolic Transition Systems and Model Checking. For generality, as-
sume a background theory T with signature Σ. We will assume that all terms
and formulas are Σ-terms and Σ-formulas, that entailment is entailment mod-
ulo T , and interpretations are T -interpretations. A symbolic transition system
(STS) S is a tuple S := 〈X, I, T 〉, where X is a finite set of state variables, I(X)
is a formula denoting the initial states of the system, and T (X,X ′) is a formula
expressing a transition relation. Here, X ′ is the set obtained by replacing each
variable x ∈ X with a new variable x′ of the same sort. Let prime(x) = x′ be the
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bijection corresponding to this replacement. We say that a variable x is frozen
if T |= x′ = x. When the state variables are obvious, we will often drop X.

A state s of S is a variable assignment over X. An execution of S of length
k is a pair 〈M, π〉, where M is an interpretation and π := s0, s1, . . . , sk−1 is a
path of length k, a sequence of states such thatM[s0] |= I(X) andM[si][si+1 ◦
prime−1] |= T (X,X ′) for all 0 ≤ i < k − 1. When reasoning about paths, it is
often convenient to have multiple copies of the state variables X. We use X@n to
denote the set of variables obtained by replacing each variable x ∈ X with a new
variable called x@n of the same sort. We refer to these as timed variables. A state
s is reachable in S if it appears in a path of some execution of S. We say that a
formula P (X) is an invariant of S, denoted by S |= P (X), if P (X) is satisfied
in every reachable state of S (i.e., for every execution 〈M, π〉,M[s] |= P (X) for
each s in π). The invariant checking problem is, given S and P (X), to determine
if S |= P (X). A counterexample is an execution 〈M, π〉 of S of length k such that
M[sk−1] 6|= P (X). If I(X) |= φ(X) and φ(X) ∧ T (X,X ′) |= φ(X ′), then φ(X)
is an inductive invariant. Every inductive invariant is an invariant (by induction
over path length). In this paper we focus on model checking problems where I,
T and P are quantifier-free. However, a quantified inductive invariant might still
be necessary to prove a property of the system.

Bounded Model Checking (BMC) is a bug-finding technique which attempts
to find a counterexample for a property, P (X), of length k for some finite k [9]. A
single BMC query at bound k for an invariant property uses a constraint solver
to check the satisfiability of the following formula: BMC(S, P, k) := I(X@0) ∧
(
∧k−1
i=0 T (X@i,X@(i+1)))∧¬P (X@k). If the query is satisfiable, there is a bug.

Counterexample-Guided Abstraction Refinement (CEGAR). CEGAR
is a general technique in which a difficult conjecture is tackled iteratively [44].
Algorithm 1 shows a simple CEGAR loop for checking an invariant P for an STS
S. It is parameterized by three functions. The Abstract function produces an
initial abstraction of the problem. It must satisfy the contract that if 〈Ŝ, P̂ 〉 =

Abstract(S, P ), then Ŝ |= P̂ =⇒ S |= P . The next function is the Prove
function. This can be any (unbounded) model-checking algorithm that can return
counterexamples. It checks whether a given property P is an invariant of a
given STS S. If it is, it returns with proven set to true. Otherwise, it returns a
bound k at which a counterexample exists. The final function is Refine. It takes
the abstracted STS and property together with a bound k at which a known
counterexample for the abstract STS exists. Its job is to refine the abstraction
until there is no longer a counterexample of size k. If it succeeds, it returns the
new STS and property. It fails if there is an actual counterexample of size k for
the concrete system. In this case, it sets the return value refined to false.

Auxiliary variables. We finish this section with relevant background on auxil-
iary variables, a crucial part of the refinement step described in Sec. 4. Auxiliary
variables are new variables added to the system which do not influence its be-
havior (i.e., the reduct to the old set of variables of any reachable state in the
new system is a reachable state in the old system), but may assist in proofs.
There are two main categories of auxiliary variables we consider: history and
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Algorithm 1 STS-CEGAR(S := 〈X, I, T 〉, P )

1: 〈〈X̂, Î, T̂ 〉, P̂ 〉 ← Abstract(S, P )
2: while true do
3: 〈k, proven〉 ← Prove(〈X̂, Î, T̂ 〉, P̂ ) // try to prove
4: if proven then return true // property proved

5: 〈〈X̂, Î, T̂ 〉, P̂ , refined〉 ← Refine(〈X̂, Î, T̂ 〉, P̂ , k) // try to refine
6: if ¬refined then return false // found counterexample
7: end while

prophecy. History variables, also known as ghost state, preserve a value, mak-
ing its past value available in future states. Prophecy variables are the dual of
history variables and provide a way to refer to a value that occurs in a future
state. Abadi and Lamport formally characterized soundness conditions for the
introduction of history and prophecy variables [1]. Here, we consider a simple,
structured form of history variables.

Definition 1. Let S = 〈X, I, T 〉 be an STS, t a term whose free variables
are in X, and n > 0, then Delay(S, t, n) returns a new STS and variable

〈〈Xh, Ih, Th〉, hn
t 〉, where Xh = X ]{h1

t , . . . , h
n
t }, Ih = I, and Th = T ∪{h1

t
′

=

t} ∪
⋃n
i=2{hi

t
′

= hi−1
t }.

The Delay operator makes the current value of a term t available for the next
n states in a path. This is accomplished by adding n new history variables and
creating an assignment chain that passes the value to the next history variable
at each state. Thus, hk

t contains the value that t had k states ago. The initial
value of each history variable is unconstrained.

Theorem 1. Let S = 〈X, I, T 〉 be an STS, P a property, and Delay(S, v, n) =
〈Sh, hn

v 〉. Then S |= P iff Sh |= P .

We refer to [1] for a general proof which subsumes Theorem 1. In contrast to the
general approach for history variables, we use a version of prophecy that only
requires a single frozen variable. The motivation for this is that a frozen variable
can be used in place of a universal quantifier, as the following theorem adapted
from [52] shows.

Theorem 2. Let S = 〈X, I, T 〉 be an STS, x a variable in formula P (X), and
v a fresh variable (i.e., not in X or X ′). Let Sp = 〈X ∪ {v}, I, T ∪ {v′ = v}〉.
Then S |= ∀x. P (X) iff Sp |= P (X){x 7→ v}.

Theorem 2 shows that a universally quantified variable in an invariant can be
replaced with a fresh symbol in a process similar to skolemization. The intuition
is as follows. The frozen variable has the same value in all states, but it is
uninitialized by I. Thus, for each path in S, there is a corresponding path (i.e.,
identical except at v) in Sp for every possible value of v. This proliferation of
paths plays the same role as the quantified variable in P . We mention here one
more theorem from [52]. This one allows us to introduce a universal quantifier.
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Algorithm 2 Prophecize(〈X, I, T 〉, P (X), t, n)

1: if n = 0 then
2: return 〈〈X ] {pt}, I, T ∪ {p′t = pt}〉, pt = t =⇒ P (X), pt〉
3: else
4: 〈〈Xh, Ih, Th〉, hn

t 〉 := Delay(〈X, I, T 〉, t, n)

5: return 〈〈Xh ] {pnt }, I, T ∪ {pn
′

t = pnt }〉, pt = hn
t =⇒ P (X), pnt 〉

6: end if

Theorem 3. Let S = 〈X, I, T 〉 be an STS, P (X) a formula, and t a term.
Then, S |= P (X) iff S |= ∀ y.(y = t =⇒ P (X)), where y is not free in P (X).

Theorems 2 and 3 are special cases of Theorems 3 and 4 of [52]. The original
theorems handle the more general case where P (X) can be a temporal formula.

3 Using Auxiliary Variables to Assist Induction

We can use Theorem 3 followed by Theorem 2 to introduce frozen prophecy
variables that predict the value of a term t when the property P is being checked.
We refer to t as the prophecy target and the process as universal prophecy. If we
also use Delay, we can target a term at some finite number of steps before the
property is checked. This is captured by Algorithm 2, which takes a transition
system, property P (X), term t, and n ≥ 0. If n = 0, it introduces a universal
prophecy variable for t. Otherwise, it first introduces history variables for t and
then applies universal prophecy to the delayed t. In either case it returns the
augmented system, augmented property, and the prophecy variable.

We will use the STS shown in Fig. 1(a) as a running example throughout
the paper (it is inspired by the hardware example from [10]). We assume the
background theory T includes integer arithmetic and arrays of integers indexed
by integers. The variables in this STS include an array and four integer variables,
representing the read index, write index, read data, and write data, respectively.
The system starts with an array of all zeros. At every step, if the write data is
less than 200, it writes that data to the array at the write index. Otherwise, the
array stays the same. Additionally, the read data is updated with the current
value of a at ir . This effectively introduces a one-step delay between when the
value is read from a and when the value is present in dr. The property is that
dr < 200. This property is clearly true, but it is not straightforward to prove
with standard model checking techniques because it is not inductive. Note that
it is also not k-inductive for any k [59]. The primary issue is that it does not
constrain the value of a at all, so in an inductive proof, the value of a could be
anything in the induction hypothesis.

One way to prove the property is to strengthen it with the quantified invari-
ant: ∀ i. read(a, i) < 200. Remarkably, observe that by augmenting the system
using Prophecize, it is possible to prove the property using only a quantifier-
free invariant. In this case, the relevant prophecy target is the value of ir one
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I := a = constarr(0 ) ∧ dr < 200

T := a′ = ite(dw < 200,

write(a, iw , dw ), a)∧
d ′r = read(a, ir )

P := dr < 200

(a)

I := a = constarr(0 ) ∧ dr < 200

T := a′ = ite(dw < 200,

write(a, iw , dw ), a)∧

d ′r =read(a, ir ) ∧ p1
′

ir = p1ir ∧ h1
ir

′
= ir

P := p1ir = h1
ir =⇒ dr < 200

(b)

Fig. 1: (a) Running example. (b) Running example with prophecy variable.

step before checking the property. We run Prophecize(〈X, I, T 〉, P, ir, 1) and it
returns the system and property shown in Fig. 1(b), along with the prophecy
variable p1ir . This augmented system has a simple, quantifier-free invariant which
can be used to strengthen the property, making it inductive: read(a, pir ) < 200.
This formula holds in the initial state because of the constant array, and if we
start in a state where it holds, it still holds after a transition.

Notice that the invariant learned over the prophecy variable has the same
form as the original quantified invariant. However, we have instantiated that uni-
versal quantifier with a fresh, frozen prophecy variable. Intuitively, the prophecy
variable captures a proof by contradiction: assume the property does not hold,
consider the value of ir one step before the first failure of the property, and then
use this value to show the property holds. This example shows that auxiliary
variables can be used to transform an STS without a quantifier-free inductive
invariant into an STS with one. However, it is not yet clear how to identify good
targets for history and prophecy variables. In the next section, we show how this
can be done as part of an abstraction refinement scheme for symbolic transition
systems over the theory of arrays.

4 Abstraction Refinement for Arrays

We now introduce our main contribution. Given a background theory TB and
a model checking algorithm for STS’s over TB , we use an instantiation of the
CEGAR loop in Algorithm 1 to check properties of STS’s over the theory that
combines TB and the theory of arrays, TA. The key idea is to abstract all array
operators and then add array lemmas as needed during refinement.

Abstract and Prove. We use a standard abstraction for the theory of arrays,
which we denote Abstract-Arrays. Every array sort is replaced with an unin-
terpreted sort, and the array variables are abstracted accordingly. Each constant
array is replaced by a fresh abstract array variable, which is then constrained to
be frozen (because constant arrays do not change over time). Additionally, we
replace the read and write array operations with uninterpreted functions. Note
that if the system contains multiple array sorts, we need to introduce a separate
read and write function for each uninterpreted abstract array sort. Using unin-
terpreted sorts and functions for abstracting arrays is a common technique in
Satisfiability Modulo Theories [7] (SMT) solvers [32]. Intuitively, our initial ab-
straction starts with memoryless arrays. We then incrementally refine the arrays’
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Î := â = ̂constarr0 ∧ dr < 200

T̂ := â′ = ite(dw < 200, ŵrite(â, iw , dw), â)∧

d ′r = r̂ead(â, ir ) ∧ ̂constarr0
′

= ̂constarr0

P̂ := dr < 200

Fig. 2: Result of calling Abstract on the example from Fig. 1(a)

memory as needed. Fig. 2 shows the result of running Abstract-Arrays on the
example from Fig. 1(a). Prove can be instantiated with any (unbounded) model
checker that can accept expressions over the background theory TB combined
with the theory of uninterpreted functions. In particular, due to our abstraction,
the model checker does not need to support the theory of arrays.

Refine. Here, we explain the refinement approach for our array abstraction. At
a high level, we solve a BMC problem over the abstract STS at bound k. We
then look for violations of array axioms in the returned counterexample, and
instantiate each violated axiom (this is essentially the same as the lazy array
axiom instantiation approach used in SMT solvers [13,14,17,27]). We then lift
these axioms to the STS-level by modifying the STS. It is this step that may
require introducing auxiliary variables. The details are shown in Algorithm 3.

We start by computing a set I of index terms with ComputeIndices – this
set is used in the lazy axiom instantiation step below. We add to I every

term that appears in a r̂ead or ŵrite operation in BMC(Ŝ, P̂ , k). We also
add a witness index for every array equality - the witness corresponds to a
skolemized existential variable in the contrapositive of axiom (ext). For sound-
ness, we must add an extra variable λσ for each index sort σ and constrain
it to be different from all the other index variables of the same sort (this is
based on the approach in [13]). Intuitively, this variable represents an arbi-
trary index different from those mentioned in the STS. We assume that the
index sorts are from an infinite domain so that a distinct element is guaran-
teed. For simplicity of presentation, we also assume from now on that there
is only a single index sort (e.g. integers). Otherwise, I must be partitioned
by sort. For the abstract STS in Fig. 2, with k = 1, the index set would be
I := {ir@0, iw@0, w0@0, w1@0, λInt@0, ir@1, iw@1, w0@1, w1@1, λInt@1}, where
w0 and w1 are witness indices.

After computing indices, the algorithm enters the main loop. We first check
the BMC(Ŝ, P̂ , k) query. The result ρ is either a counterexample, or the dis-
tinguished value ⊥, indicating that the query is unsatisfiable. If it is the latter,
then we return the refined STS and property, as the property now holds on the
STS up to bound k. Otherwise, we continue. The next step (line 5) is to find
violations of array axioms in the execution ρ based on the index set I.

CheckArrayAxioms takes two arguments, a counterexample and an index set,
and returns instantiated array axioms that do not hold over the counterexample.

This works as follows. We first look for occurrences of ŵrite in the BMC formula.
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Algorithm 3 Refine-Arrays (Ŝ := 〈X̂, Î, T̂ 〉, P̂ , k)

1: I ← ComputeIndices(Ŝ, P̂ , k)
2: loop
3: ρ← BMC(Ŝ, P̂ , k)

4: if ρ = ⊥ then return 〈〈X̂, Î, T̂ 〉, P̂ , true〉 // Property holds up to bound k
5: 〈ca,nca〉 ← CheckArrayAxioms(ρ, I)

6: if ca = ∅ ∧ nca = ∅ then return 〈〈X̂, Î, T̂ 〉, P̂ , false〉 // True counterexample
7: // Go through non-consecutive array axiom instantiations
8: for 〈ax, i@ni〉 ∈ nca do
9: let nmin := min(τ(ax)\{ni})

10: 〈〈Xp, Ip, T p〉, P p, pk−ni
i 〉 ← Prophecize(〈X̂, Î, T̂ 〉, P̂ , i, k − ni)

11: axc ← ax{i@ni 7→ pk−ni
i @nmin}

12: ca ← ca ] {axc@nmin} // add consecutive version of axiom
13: I ← I ] {pk−ni

i @0, . . . , pk−ni
i @k}

14: X̂ ← Xp; Î ← Ip; T̂ ← T p; P̂ ← P p

15: end for
16: // Go through consecutive array axiom instantiations
17: for ax ∈ ca do
18: let nmin := min(τ(ax)), nmax := max (τ(ax))
19: assert(nmax = nmin ∨ nmax = nmin + 1)
20: if k = 0 then
21: Î ← Î ∧ ax{X@nmin 7→ X}
22: else if nmin = nmax then
23: T̂ ← T̂ ∧ ax{X@nmin 7→ X} ∧ ax{X@nmin 7→ X ′}
24: else
25: T̂ ← T̂ ∧ ax{X@nmin 7→ X}{X@(nmin + 1) 7→ X ′}
26: end if
27: end for
28: end loop

For each such occurrence, we instantiate the (write) axiom so that the ŵrite

term in the axiom matches the term in the formula (i.e., we use the ŵrite term
as a trigger). This instantiates all quantified variables except for i. We then
instantiate i once for each variable in the index set. We evaluate each of the
instantiated axioms using the values from the counterexample and keep those
instantiations that reduce to false. We do the same thing for the (const) axiom,
using each constant array term in the BMC formula as a trigger. Finally, for each
array equality a@m = b@n in the BMC formula, we check an instantiation of the
contrapositive of (ext): a@m 6= b@n → read(a@m,wi@n) 6= read(b@n,wi@n).
We add instantiated formulas that do not hold in ρ to the set of violated axioms.

CheckArrayAxioms sorts the collected axiom instantiations into two sets
based on which timed variables they contain. The consecutive set contains for-
mulas with timed variables whose timing differs by at most one; whereas the
timed variables in the formulas contained in the non-consecutive set may differ
by more. Formally, let τ be a function which takes a single timed variable and



Counterexample-Guided Prophecy 9

returns its time (e.g., τ(i@2) = 2). We lift this to formulas by having τ(φ) re-
turn the set of all time-steps for variables in φ. A formula φ is consecutive iff
max (τ(φ))−min(τ(φ)) ≤ 1. Note that instantiations of (ext) are consecutive by
construction. Additionally, because constant arrays have the same value in all
time steps, we can always choose a representative time step for instantiations of
(const) that results in a consecutive formula. However, instantiations of (write)
may be non-consecutive, because the variable from the index set may be from
a time step that is different from that of the trigger term. CheckArrayAxioms
returns the pair 〈ca,nca〉, where ca is a set of consecutive axiom instantiations
and nca is a set of pairs – each of which contains a non-consecutive axiom in-
stantiation and the index-set variable that was used to create that instantiation.

At line 6, we check if the returned sets are empty. If so, then there are no array
axiom violations and ρ is a concrete counterexample. In this case, the system,
property, and false are returned. Otherwise, we process the two sets. In lines
8-15, we process the non-consecutive formulas. Given a non-consecutive formula
ax together with its index-set variable i@ni, we first compute the minimum time-
step of the axiom’s other variables, nmin. We then use the Prophecize method
to create a prophecy variable pk−ni

i , that is effectively a way to refer to i@ni at
time-step nmin (line 10). This allows us to create a consecutive formula axc that
is semantically equivalent to ax (line 11). This new consecutive formula is added
to ca in line 12, and in line 13 the introduced prophecy variables (one for each
time-step) are added to the index set. Then, line 14 updates the abstraction.

At line 17, we are left with a set of consecutive formulas to process. For each
consecutive formula ax, we compute the minimum and maximum time-step of
its variables (line 18), which must differ by no more than 1 (line 19). There are
three cases to consider: i) when k = 0, the counterexample consists of only the
initial state–we thus refine the initial state by adding the untimed version of ax
to Î (line 21); ii) if ax contains only variables from a single time step, then we
add the untimed version of ax as a constraint for both X and X ′, ensuring that
it will hold in every state (line 23); iii) finally, if ax contains variables from two
adjacent time steps, we can translate this directly into a transition formula to
be added to T̂ (line 25). The loop then repeats with the newly refined STS.

Example. Consider again the example from Fig. 2, and suppose Refine-Arrays

is called on Ŝ and P̂ with k = 3. At this unrolling, one possible abstract coun-
terexample violates the following nonconsecutive axiom instantiation:

(ir@2 = iw@0 =⇒ r̂ead(ŵrite(â@0, iw@0, dw@0), ir@2) = dw@0) ∧

(ir@2 6= iw@0 =⇒ r̂ead(ŵrite(â@0, iw@0, dw@0), ir@2) = r̂ead(â@0, ir@2))

Calling Prophecize(Ŝ, P̂ , ir , 1) returns the new STS 〈〈X̂]{h1
ir
, p1ir }, Î, T̂ ∧h1 ′

ir
=

ir∧p1
′

ir
= p1ir 〉 and the new property p1ir = h1

ir
=⇒ dr < 200. The history variable

h1
ir

makes the previous value of ir available at each time-step, and the prophecy
variable p1ir mimics a universally quantified variable. We substitute p1ir @0 for
ir@2 to obtain a consecutive formula. Its untimed version (and a primed version)
is added to the transition relation.
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We stress that processing nonconsecutive axioms using Prophecize is how
we automatically discover the universal prophecy variable p1ir , and it is exactly
the universal prophecy variable that was needed in Sec. 3 to prove correctness of
the running example. An alternative approach could avoid nonconsecutive ax-
ioms using Craig interpolants [26] so that only consecutive axioms are found [15].
However, quantifier-free interpolants are not guaranteed to exist for the standard
theory of arrays, and the auxiliary variables found using nonconsecutive axioms
are needed to improve the chances of finding a quantifier-free inductive invariant.

It is important to have enough prophecy variables to assist in constructing
inductive invariants. We found that we could often obtain a larger, richer set of
prophecy variables by weakening our array abstraction. We do this by replacing
equality between arrays by an uninterpreted predicate, and also checking the con-
gruence axiom, the converse of (ext). Since more axioms are checked, there are
more opportunities to introduce auxiliary variables. We call this weak abstrac-
tion (WA) as opposed to strong abstraction (SA), which uses regular equality
between abstract arrays and guarantees congruence through UF axioms.

On the other hand, an excessive number of unnecessary auxiliary variables
could overwhelm the Prove step. Thus, an improvement not shown in Algorithm
3 is to check consecutive axioms first and only add nonconsecutive ones when
necessary. This is the motivation behind the custom array solver implementation
CheckArrayAxioms based on [13]. In principle, we could have used an SMT solver
to find array axioms, but it would give no preference to consecutive axioms. Sim-
ilarly, we could overwhelm the algorithm with unnecessary consecutive axioms.
CheckArrayAxioms can still produce hundreds or even thousands of (consecu-
tive) axiom instantiations. Once these are lifted to the transition system, some
may be redundant. To mitigate this issue, when the BMC check returns ⊥ and
we are about to return (line 4), we keep only axioms that appear in the unsat
core of the BMC formula [22].

Correctness. We now state two important correctness theorems. Note that here
and below, proofs are omitted due to space constraints. An extended version with
proofs is available at: https://arxiv.org/abs/2101.06825.

Theorem 4. Algorithm 1, instantiated with Abstract-Arrays, a model-check-
er Prove as described above, and Refine-Arrays is sound.

Theorem 5. If Algorithm 1, instantiated with Abstract-Arrays, Prove as
described above, and Refine-Arrays, returns false, there is a concrete coun-
terexample of length k in the concrete transition system.

5 Expressiveness and Limitations

We now address the expressiveness of counterexample-guided prophecy with
regard to the introduction of auxiliary variables. For simplicity, we ignore the
array abstraction, relying on the correctness theorems. An inductive invariant
using auxiliary variables can be converted to one without auxiliary variables

https://arxiv.org/abs/2101.06825
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by first universally quantifying over the prophecy variables, then existentially
quantifying over the history variables. The details are captured by this theorem:

Theorem 6. Let S := 〈X, I, T 〉 be an STS, and P (X) be a property such
that S |= P (X). Let H be the set of history variables, and P be the set of
prophecy variables introduced by Refine-Arrays. Let S̃ := 〈X ∪ H ∪ P, I, T̃ 〉
and P̃ := (

∧
p∈P p = t̃(p)) =⇒ P (X) be the system and property with auxil-

iary variables. The function t̃ maps prophecy variables to their target term from
Prophecize. If Inv(X,H,P) is an inductive invariant for S̃ and entails P̃ , then
∃H∀PInv(X,H,P) is an inductive invariant for S and entails P , where ∃H and
∀P bind each variable in the set with the corresponding quantifier.

Although the invariants found using counterexample-guided prophecy corre-
spond to ∃∀ invariants over the unmodified system, we must acknowledge that
the existential power is very weak. The existential quantifier is only used to re-
move history variables. While history variables can certainly be employed for
existential power in an invariant [55], these specific history variables are intro-
duced solely to target a term for prophecy and only save a term for some fixed,
finite number of steps. Thus, we do not expect to gain much existential power in
finding invariants on practical problems. This use of history and prophecy vari-
ables can be thought of as quantifier instantiation at the model checking level,
where the instantiation semantically uses a term appearing in an execution of
the system. Consequently, our technique performs well on systems where there is
only a small number of instantiations needed over terms that are not too distant
in time from a potential property violation that must be disproved (i.e., not
many history variables are required). This appears to be a common situation for
invariant-finding benchmarks, as we show empirically in Sec. 6.

Limitations. If our CEGAR loop terminates, it either terminates with a proof or
with a true counterexample. However, it is possible that the procedure may not
terminate. In particular, while we can always refine the abstraction for a given
bound k, there is no guarantee that this will eventually result in a refinement
that rules out all spurious counterexamples (of any length).

This failure mode occurs, for instance, when no finite number of instantiations
can capture all the relevant indices of the array. Consider an example system
with I := a = constarr(0 ), T := a′ = write(a, i0 , read(a, i1 ) + 1 ), and P :=
read(a, ir ) ≥ 0. The array a is initialized with 0 at every index, and at every
step, a is updated at a single index by reading from an arbitrary index of a and
adding 1 to the result. Note that the index variables are unconstrained: they
can range over the integers freely at each time step. Then, the property is that
every element of a is positive. This property clearly holds because of a quantified
invariant maintained by the system: ∀i . read(a, i) ≥ 0.

However, the initial abstraction is a memoryless array which can easily vi-
olate the property by returning negative values from reads. Since the array is
updated in each step at an arbitrary index based on a read from another arbi-
trary index, no finite number of prophecy variables can capture all the relevant
indices. It will successively rule out longer finite spurious counterexamples, but



12 M. Mann, A. Irfan, A. Griggio, O. Padon, C. Barrett

will never be refined enough to prove the property unboundedly. We believe that
this limitation can be addressed in future work, perhaps by adapting techniques
from [52]. However, it is not yet clear how to automate that process. Note that
an even simpler system which does not add 1 in the update would already be
problematic; however, for that case, it is straightforward to extend our algorithm
to have it learn that the array does not change.

A related, but less fundamental issue is that the index set might not contain
the best choice of targets for prophecy. While the index set is sufficient for ruling
out bounded counterexamples, it is possible there is a better target for universal
prophecy that does not appear in the index set. However, based on the evaluation
in Sec. 6, it appears that the index set does work well in practice.

6 Experiments

Implementation. In this section, we evaluate a prototype implementation
of counterexample-guided prophecy, which instantiates Prove with ic3ia [34]
(downloaded Apr 27, 2020), an open-source C++ implementation of IC3 via
Implicit Predicate Abstraction (IC3IA) [20], which is itself a CEGAR loop that
uses implicit predicate abstraction to perform IC3 [12] on infinite-state systems
and uses interpolants to find new predicates. ic3ia uses MathSAT [21] (version
5.6.3) as the backend SMT solver and interpolant producer. We call our proto-
type prophic3 [48]. In our implementation, we also include a simple abstraction-
refinement wrapper which abstracts large constant integers and refines them with
the actual values if that fails. This is especially useful for dealing with software
benchmarks with large constant loop bounds. Otherwise, the system might need
to be unrolled to a very large bound to reach an abstract counterexample.

Setup. We evaluate our tool against three state-of-the-art tools for inferring uni-
versally quantified invariants over linear arithmetic and arrays: freqhorn, quic3,
and gspacer. All these tools are Constrained Horn Clause (CHC) solvers built
on Z3 [54]. The algorithm implemented in freqhorn [28] is a syntax-guided syn-
thesis [4] approach for inferring universally quantified invariants over arrays [29].
quic3 is built on Spacer [40], the default CHC engine in Z3, and extends IC3
over linear arithmetic and arrays to allow universally quantified frames (frames
are candidates for inductive invariants maintained by the IC3 algorithm). It also
maintains a set of quantifier instantiations which are provided to the underly-
ing SMT solver. quic3 was recently incorporated into Z3. We used Z3 version
4.8.9 with parameters suggested by the quic3 authors.4 Finally, gspacer is an
extension of Spacer which adds three new inference rules for improving local
generalizations with global guidance. While this last technique does not specifi-
cally target universally quantified invariants, it can be used along with the quic3
options in Spacer and potentially executes a much different search. The gspacer

4 fp.spacer.q3.use qgen=true fp.spacer.ground pobs=false

fp.spacer.mbqi=false fp.spacer.use euf gen=true
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group freqhorn (81) quic3 (42) vizel (32) chc-comp (501) tool total

prophic3 67/4 42/0 20/3 1 43/159 59 172/166 60

prophic3-SA 62/4 37/0 19/3 1 36/160 67 154/167 68

freqhorn 65/4 0/0 0/1 0 5/46 1 70/51 1

quic3 55/4 34/0 15/4 1 74/137 75 178/145 76

gspacer 35/5 27/0 18/4 1 66/138 94 146/147 95

ic3ia 0/4 0/0 0/3 1 0/158 59 0/165 60

spacer 0/5 0/0 0/4 1 0/134 77 0/143 78

Fig. 3: Experimental results. The safe results are reported as # Q / # QF. The second
column per group shows unsafe results, the first two groups had only safe benchmarks.

submission [43] won the arrays category in CHC-COMP 2020 [58]. We also in-
clude ic3ia and the default configuration of Spacer in our results, neither of
which can produce universally quantified invariants. Our default configuration
of prophic3 uses weak abstraction, but we also include a version running strong
abstraction (prophic3-SA) in our experiments. We chose to build our prototype
on ic3ia instead of Spacer, in part because we needed uninterpreted functions
for our array abstraction, and Spacer does not handle them in a straightforward
way, due to the semantics of CHC [11].

We compare these solvers on four benchmark sets: i) freqhorn - benchmarks
from the freqhorn paper [29]; ii) quic3 - benchmarks from the quic3 paper [37]
(these were C programs from SV-COMP [8] that were modified to require uni-
versally quantified invariants); iii) vizel - additional benchmarks provided to us
by the authors of [37]; and iv) chc-comp-2020 - the array category benchmarks
of CHC-COMP 2020 [57]. Additionally, we sort the benchmarks into three cate-
gories: 1) Q - safe benchmarks solved by some tool supporting quantified invari-
ants but none of the solvers that do not; 2) QF - those solved by at least one of
the tools that do not support quantified invariants, plus any unsafe benchmarks;
and 3) U - unsolved benchmarks. Because not all of the benchmark sets were
guaranteed to require quantifiers, this is an approximation of which benchmarks
required quantified reasoning to prove safe.

Both prophic3 and ic3ia take a transition system and property specified
in the Verification Modulo Theories (VMT) format [23], which is a transition
system format built on SMT-LIB [6]. All other solvers read the CHC format.
We translated benchmark sets i and iv from CHC to VMT using the horn2vmt
program which is distributed with ic3ia. For benchmark sets ii and iii, we
started with the C programs and generated both VMT and CHC using Kratos2
(an updated version of Kratos [19]). We ran all experiments on a 3.5GHz Intel
Xeon E5-2637 v4 CPU with a timeout of 2 hours and a memory limit of 32Gb.
An artifact for reproducing these results is publicly available [49,38].

Results. The results are shown in Fig. 3. We first observe that prophic3 solves
the most benchmarks in each of the first three sets, both overall and in category
Q. The quic3 (and most of the freqhorn) benchmarks require quantified invari-
ants; thus, ic3ia and Spacer cannot solve any of them. On solved instances in
the Q category, prophic3 introduced an average of 1.2 prophecy variables and a
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median of 1. This makes sense because, upon inspection, most benchmarks only
require one quantifier and we are careful to only introduce prophecy variables
when needed. On benchmarks it cannot solve, ic3ia either times out or fails
to compute an interpolant. This is expected because quantifier-free interpolants
are not guaranteed over the standard theory of arrays. Even without arrays, it is
also possible for prophic3 to fail to compute an interpolant, because MathSAT’s
interpolation procedure is incomplete for combinations with non-convex theories
such as integers. However, this was rarely observed in practice.

We also observe that prophic3-SA solves fewer benchmarks in the first three
sets. However, it is faster on commonly solved instances. This makes sense be-
cause it needs to check fewer axioms (it uses built-in equality and thus does not
check equality axioms). We suspect that it solves fewer benchmarks in the first
three sets because it was unable to find the right prophecy variable. For exam-
ple, for the standard find true-unreach-call ground benchmark in the quic3
set, a prophecy variable is needed to find a quantifier-free invariant. However,
because of the stronger reasoning power of SA, the system can be sufficiently re-
fined without introducing auxiliary variables. ic3ia is then unable to prove the
property on the resulting system without the prophecy variable, instead timing
out. Interestingly, notice that prophic3-SA solves the most benchmarks in the
QF category overall, suggesting that there are practical performance benefits of
the CEGAR approach even when quantified reasoning is not needed.

There was one discrepancy on the CHC-COMP 2020 benchmarks: gspacer
disagrees with quic3, Spacer, and prophic3 on chc-LIA-lin-arrays 381. This is
the same discrepancy mentioned in the CHC-COMP 2020 report [58]. prophic3
proved this benchmark safe without introducing any auxiliary variables and we
used both CVC4 [5] and MathSAT to verify that the solution was indeed an in-
ductive invariant for the concrete system. We are confident that this benchmark
is safe and thus do not count it as a solved instance for gspacer.

Some of the tools are sensitive to the encoding. Since it is syntax-guided,
freqhorn is sensitive to the encoding syntax. The freqhorn benchmarks were
hand-written to be syntactically simple, an encoding which is also good for
prophic3. However, prophic3 can be sensitive to other encodings. For example,
the quic3 benchmarks are also included in the chc-comp-2020 set, but trans-
lated by SeaHorn [35] instead of Kratos2. prophic3 does much worse on the
SeaHorn encoding (6 vs 42). We stress that the CHC solvers performed similarly
on both encodings, so we did not compare against disadvantaged solvers. In fact,
quic3 and freqhorn solved exactly the same number in both translations. How-
ever, gspacer solved fewer using the Kratos2 encoding (27 vs 34). Importantly,
prophic3 on the Kratos2 encoding solved more benchmarks than any other tool
and encoding pair.

There are two main reasons why prophic3 fails on the SeaHorn encodings.
First, due to the LLVM-based encoding, some of the SeaHorn translations have
index sets which are insufficient for finding the right prophecy variable. This has
to do with the memory encoding and the way that fresh variables and guards
are used. SeaHorn also splits memories into ranges which is problematic for our
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technique. Second, the SeaHorn translation is optimized for CHC, not for transi-
tion systems. For example, it introduces many new variables, and the argument
order between different predicates may not match. In the transition system, this
essentially has the effect of interchanging the values of variables between each
loop. SeaHorn has options that address some of these issues, and these helped
prophic3 solve more benchmarks, but none of these options produce encod-
ings that work as well as the Kratos2 encodings. The difference between good
CHC and transition system encodings could also explain the overall difference
in performance on chc-comp-2020 benchmarks, most of which were translated
by SeaHorn. Both of these issues are practical, not fundamental, and we believe
they can be resolved with additional engineering effort.

7 Related Work

There are two important related approaches for abstracting arrays in horn clauses
[53] and memories in hardware [10]. Both make a similar observation that ar-
rays can be abstracted by modifying the property to maintain values at only a
finite set of symbolic indices. We differ from the former by using a refinement
loop that automatically adjusts the precision and targets relevant indices. The
latter is also a refinement loop that adjusts precision, but differs in the domain
and the refinement approach, which uses a multiplexer tree. We differ from both
approaches in our use of array axioms to find and add auxiliary variables.

A similar lazy array axiom instantiation technique is proposed in [15]. How-
ever, their technique utilizes interpolants for finding violated axioms and cannot
infer universally quantified invariants. The work of [18] also uses lazy axiom-
based refinement, abstracting non-linear arithmetic with uninterpreted func-
tions. We differ in the domain and the use of auxiliary variables. In [55], prophecy
variables defined by temporal logic formulas are used for liveness and temporal
proofs, with the primary goal of increasing the power of a temporal proof sys-
tem. In contrast, we use prophecy variables here for a different purpose, and we
also find them automatically. The work of [24] includes an approach for synthe-
sizing auxiliary variables for modular verification of concurrent programs. Our
approach differs significantly in the domain and details.

There is a substantial body of work on automated quantified invariant gen-
eration for arrays using first-order theorem provers [42,16,41,51]. These include
extensions to saturation-based theorem proving to analyze specific kinds of pred-
icates, and an extension to paramodulation-based theorem proving to produce
universally quantified interpolants. In [46], the authors propose an abstract in-
terpretation approach to synthesize universally quantified array invariants. Our
method also uses abstraction, but in a CEGAR framework.

Two other notable approaches capable of proving properties over arrays that
require invariants with alternating quantifiers are [30,56]. The former proposes
trace logic for extending first-order theorem provers to software verification, and
the latter takes a counterexample-guided inductive synthesis approach. Our ap-
proach takes a model checking perspective and differs significantly in the details.
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While these approaches are more general, we compared against state-of-the-art
tools that focus specifically on universally quantified invariants.

MCMT [31,33,25] and its derivatives [2,3] are backward-reachability algo-
rithms for proving properties over “array-based systems,” which are typically
used to model parameterized protocols. These approaches target syntactically
restricted functional transition systems with universally quantified properties,
whereas our approach targets general transition systems. Two other approaches
for solving parameterized systems modeled with arrays are [36] and [47]. The
former iteratively fixes the number of expected universal quantifiers, then ea-
gerly instantiates them and encodes the invariant search to nonlinear CHC. The
latter first uses a finite-state model checker to discover an inductive invariant for
a specific parameterization and then applies a heuristic generalization process.
We differ from all these techniques in domain and the use of auxiliary variables.
Due to the limitations explained in Sec. 5, we do not expect our approach to
work well for parameterized protocol verification without improvements.

In [45], heuristics are proposed for finding predicates with free indices that
can be universally quantified in a predicate abstraction-based inductive invariant
search. Our approach is counterexample-guided and does not utilize predicate
abstraction directly (although IC3IA does). The authors of [39] propose a tech-
nique for Java programs that associates heap memory with the program location
where it was allocated and generates CHC verification conditions. This enables
the discovery of invariants over all heap memory allocated at that location, which
implicitly provides quantified invariants. This is similar to our approach in that
it gives quantification power without explicitly using quantifiers and in that
their encoding removes arrays. However, we differ in that we focus on transition
systems and utilize a different paradigm to obtain this implicit quantification.

8 Conclusion

We presented a novel approach for model checking transition systems containing
arrays. We observed that history and prophecy variables can be extremely useful
for reducing quantified invariants to quantifier-free invariants. We demonstrated
that an initially weak abstraction in our CEGAR loop can help us to automati-
cally introduce relevant auxiliary variables. Finally, we evaluated our approach
on four sets of interesting array-manipulating benchmarks. In future work, we
hope to improve performance, explore a tighter integration with the underly-
ing model checker, address the limitations described in Sec. 5, and investigate
applications of counterexample-guided prophecy to other theories.
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