
A Teamwork-based Approach to Programming
Fundamentals with Scheme, Smalltalk & Java

Michele Lanza
Faculty of Informatics,
University of Lugano

Switzerland
michele.lanza@unisi.ch

Amy L. Murphy
FBK-IRST

Italy
murphy@fbk.eu

Romain Robbes, Mircea
Lungu, Paolo Bonzini,

Marco D’Ambros,
Richard Wettel

Faculty of Informatics,
University of Lugano

first.last@lu.unisi.ch

ABSTRACT
In October 2004 the University of Lugano in southern Switzerland
established a new faculty of informatics. Its founding principles
are innovation in teaching and faculty participation in the research
community. With respect to teaching, students spend mornings at-
tending lectures and afternoons in an Atelier designed to support
interaction both among students and with the instructors. In teach-
ing the first year “Programming Fundamentals” courses, we took
advantage of the clean slate nature of the faculty to introduce in-
novative teaching elements. The novel aspects include our use of
Scheme, Smalltalk, and Java, our combination of individual, pair
and group projects and the integration of expert lectures to intro-
duce useful, but slightly orthogonal elements at key points in the
semester. Our very positive experience is reported along with a
discussion of our observations.

Categories and Subject Descriptors
K.3.2 [Computer and Information Science Education]: Com-
puter Science Education, Curriculum—Programming

1. INTRODUCTION
In 2004 a new faculty of informatics was founded in Lugano [5],

a city located in the southern, Italian-speaking part of Switzerland.
The faculty is remarkable in many ways. It features a very low
professor-student ratio (1:6). English is the exclusive teaching lan-
guage, targeting an international student body. A typical week is
intentionally structured with all classroom lectures in the mornings
and afternoons devoted to a graded Atelier, which is a flexible mix-
ture of lectures on dedicated technologies (CVS, LATEX, HTML,
etc.), hands-on assignments, and, to a large extent, group project
work. Moreover, we have disposed of all traditional computing
labs, instead providing each student with a portable computer for
use throughout the three-year bachelor studies. We took advantage
of these features and the flexibility and freedom offered by a new
faculty in the context of introducing programming concepts to the

c©ACM, 2008. This is the author’s version of the work. It is posted
here by permission of ACM for your personal use. Not for redistribu-
tion. The definitive version was published in Proceedings of the 30th In-
ternational Conference on Software Engineering (ICSE), Education Track
http://doi.acm.org/10.1145/1368088.1368199
ICSE 2008 May 21-25 2008, Leipzig, Germany.
Copyright 2008 ACM X-XXXXX-XX-X/XX/XX ...$5.00.

first year students. While remaining within the guidelines of the
ACM curriculum, we introduced into our “Programming Funda-
mentals” courses a number of innovations described in this article.
The main cornerstones are:

• Multiple programming languages (Scheme, Smalltalk, and
Java), using each to teach specific concepts.

• Group projects, allowing groups of students to design and
deliver self-contained systems, as early as the first semester.

• Independent exercises plus single and pair projects, empha-
sizing individual mastery of topics.

• Design fests, in which teaching staff works with students on
the design of a system, thus enabling guided learning.

• Occasional expert lectures, orthogonal to the syllabus, serv-
ing to boost knowledge necessary for project completion.

The first year of the curriculum includes two semesters of pro-
gramming fundamentals (PF). Figure 1 shows how the above teach-
ing elements fit into the semester structure of each of the two courses.

G
ro

up
Pr

oj
ec

t
 (3

 w
ee

ks
)

Exercises

Lectures

Pe
rs

on
al

Pr
oj

ec
t

 (2
 w

ee
ks

)

De
sig

n
Fe

st

De
sig

n
Fe

st

PF1

G
ro

up
 P

ro
je

ct
 (5

 w
ee

ks
)

Lectures

Exercises

Pa
ir

Pr
oj

ec
t

 (2
 w

ee
ks

)

De
sig

n
Fe

stPF2

Figure 1: The semester course structure of PF1 and PF2.

The number of lectures and exercises progressively decreases
each time a project starts, allowing the students to focus on its de-
mands. The remainder of this article discusses the motivations for
choosing multiple programming languages, and describes in detail
the main teaching elements. We also provide a discussion of our
experience.

2. LANGUAGES AND TOOLS
The choice of the first programming language in a computer sci-

ence curriculum is hotly debated [1, 6, 4]. We believe that the
choice should be made according to the goals of the educational
institution. Therefore our intent is not to argue that our mix of
languages is the best for the first year, but rather to show how our
choice supports our educational goals, namely to (1) get students
started quickly without overloading them with too many language-
specific details; (2) use a design-oriented programming approach,
leaving algorithm-centered development for later courses; (3) teach
students how to use interfaces first, and later to teach how to create
them as well as their supporting implementations; (4) teach stu-
dents the importance of code style, clarity, and testing. To meet
the above goals, we chose the programming languages Scheme,
Smalltalk, and Java.

Scheme - the functional clean slate. The majority of our stu-
dents enters the program with no programming experience. Of
those with some knowledge, it is typically with mainstream lan-
guages such as Java, C, or C++. Using Scheme as the first pro-
gramming language both places all students at an equal start posi-
tion and provides several other important benefits: Scheme has a
simple syntax, it does not require a complex development environ-
ment, and it comes with easy to use multimedia libraries. All these
factors have a tonic influence on the students as they see themselves
solving problems shortly after the beginning of the course, both in-
creasing motivation and productivity. We used the textbook How to
Design Programs [3], provided by the PLT Scheme group together
with a powerful and easy-to-use development environment called
Dr. Scheme1. The book emphasizes algorithmic thinking and prob-
lem solving, presenting material at a reasonable pace. The first
semester is dedicated to grasp the very basic aspects of program-
ming: Manipulating data structures, learning what an algorithm is,
problem decomposition, using functions, lists and recursion. Stu-
dents also learn more advanced topics, such as: Using function
libraries, higher-order functions and functional abstraction, vectors
and state-based programming. The book enforces programming
style by introducing an incrementally refined design recipe, which
shows the students the importance of: (1) having a clean program-
ming style, (2) documenting the source code, (3) defining clear in-
terfaces, and (4) testing the written code.

Smalltalk - pure objects. Shortly before his death, Kirsten Ny-
gaard (the inventor of Simula) stated during his keynote talk at
ECOOP 20022 that it is wrong to lead the students from an impera-
tive and procedural language to an object-oriented one, because the
students would have trouble rearranging their concepts. Instead he
proposed to "throw the babies into the water" and see what happens.

We argue that Java is not an appropriate choice in our context,
as it comes with an overly complex syntax. However, since our
later courses use Java as the primary programming language, we
needed to find a transition to it from Scheme. We chose Smalltalk
-the purest object-oriented language- for several reasons: It has a
simple syntax, it is a reflective language, allowing the students to
observe created objects and change them, and it features a profes-
sional development environment similar to Eclipse. Most of all,
it helps us meet the following didactic goals: Teach the students
the concepts of objects, classes, inheritance, polymorphism, mes-
sage sending, and introduce them to frameworks. Smalltalk also
features an easy way to evaluate code similar to Scheme.

Java - the mainstream. Java is currently one of the mainstream
object-oriented languages. Its extensive libraries make it a pow-

1See http://www.drscheme.org/ and http://www.htdp.org/
2European Conference on Object-Oriented Programming.

erful tool for both advanced university courses and real-life sys-
tems. To transition into Java, we start from scratch with the lan-
guage constructs, to both give students who have fallen behind a
chance to catch up, and to reinforce the importance of key concepts.
Given the students’ initial exposure to these ideas with Scheme and
Smalltalk, they are covered quickly. Notably, this includes the com-
plexities of object orientation, which are often difficult to teach in
Java. Instead, by introducing the concepts in the context of the
more straightforward Smalltalk language, we only need to cover the
nuances introduced by Java, a much easier task both for teaching
and for learning. As a consequence of covering the basics quickly,
we have time to teach a substantial number of advanced Java top-
ics. Finally, our focus is not on “how to program”, but on “how to
design (and build) object-oriented programs”. This moves the mo-
tivation of the course from programming syntax to using available
library interfaces, and developing solid design skills.

Our Java material is based on Thinking in Java [2], a good lan-
guage reference book. However, it is important to note that the
course always deals with design concepts, using Java as a tool. As
part of this transition to Java, we initially enforce that the students
not use an integrated development environment, as they have previ-
ously been accustomed in Scheme and Smalltalk. Instead, we use
Emacs and a shell to expose the internal and external file structures
of Java classes and systems as well as the edit-compile-execute
steps. This basic knowledge serves the students well when we in-
troduce Eclipse in the middle of the Java unit. Further, despite
the complexity of Eclipse, students easily see how the basic com-
ponents are integrated, giving explicit meaning to the sometimes
obscure buttons. Test-based development (with JUnit), documen-
tation (with JavaDoc), and code versioning (with CVS) are also
integrated.

3. TEACHING ELEMENTS
Given our goals to teach programming fundamentals with an em-

phasis on group development skills, we exploit a variety of didactic
elements throughout the first year. Some are novel, some are ap-
plied in novel ways.

Individual work. A group is only as strong as its members,
therefore developing individual skills cannot be overlooked. Indi-
vidual student progress is assessed throughout the semesters with
graded individual exercises and written exams. A typical graded as-
signment lasts one week. Based on prior observations that students
often delay even looking at assignments until immediately before
the due date, each assignment includes a small, graded trivia part
due 24 hours after we publish the assignment. Typically quick to
complete, the goal is to force the students to demonstrate having
read the assignment, thus putting its topics in their heads, even if
they delay working on it. While not popular among the students,
the trivia part gives us the opportunity for fast feedback if the stu-
dent is going in the wrong direction, and has the desired effect to get
them thinking about the assignment. At the beginning, when stu-
dent programming skills are still low, and later when appropriate
(e.g., following expert lectures), we augment the regular exercise
series with non-graded hands-on exercises, completed in the lab
with supervision. With the goal to introduce a concept, rather than
evaluate its mastery, these assignments typically guide a student,
step-wise, through a problem and its solution.

Single and pair projects. Before being thrown into large group
projects, students must be confronted with problems of interme-
diate size. These problems must be bigger than usual exercises,
but smaller than real-world applications, giving students the op-
portunity to practice their language knowledge and design abilities
on a smaller scale before having to deal with team complexities.

Therefore, early in each semester, we introduce projects with both
smaller scope and fewer people.

Personal Projects. To gain experience with Scheme, students do
a personal project in the middle of the semester. Thus they practice
problem identification and decomposition by themselves, and apply
previously learned algorithms in different contexts. The proposed
projects are mostly games, as games provide both good motivation
and challenging problems. We define multiple distinct subjects,
maximizing their chance to find an interesting area.

Pair Projects. To strengthen the concepts of OO design intro-
duced early in the second semester, we assign a pair project. As the
students already have experience with teamwork, a pair project is
possible, allowing for a larger project than would be possible only
by an individual. These projects share a common theme, namely
the definition of web-based applications using Smalltalk. Again,
student motivation is high, since they use web applications in their
day-to-day life. To ensure diversity, we offer at least 3 different
projects. They also learn the challenges of programming in pairs,
which is a different mindset than both single and team program-
ming. The skills of this project, such as defining class hierarchies,
are reused in the group project. Students also are confronted for
the first time with the concept of frameworks, as their projects use
Seaside, a web framework3.

Design fests. To expose students to a non-trivial project in a
guided experience we organized three design fests (DF) during the
first year. In general, a DF is an intensive one-day session in which
the instructors (both teaching assistants and professors) work with
the students to collaboratively design a system whose specifications
are presented at the beginning of the day. Our DFs take place be-
fore the personal and group project of PF1, and before the end of
semester project of PF2. By observing how the instructors guide
the discussions, the students learn to apply similar techniques dur-
ing later projects where the instructors are less involved.

PF1 Design Fest. The first DF takes place after 6 weeks of
classes. By then, the students have learned to write simple pro-
grams consisting of a handful of functions. The DF revolves around
implementing a board game similar to SameGame, which demands
implementation of several non-trivial tasks: random board gener-
ation, token selection, making tokens fall, computing the score,
defining the game’s main loop, etc. The students face for the first
time the task of dividing the program into distinct parts, recogniz-
ing the underlying data structures; it is the first hands-on experi-
ence with the divide and conquer principle. We split the students
into sets of approximately 15 students, with each set independently
working to develop a version of the game. We then divide the set
into groups of 3 to 4 students, each of which works on a part of
the problem for their set. Teaching assistants take the role of con-
sultants, guiding the design discussion, and pointing out potential
problems with the solution being proposed by the students. Key
points in the design are the independent functions to be imple-
mented by each group and the interfaces among these functions.
Defining and developing these functions are important experiences
for the students as they clearly understand the complexity of the
system and the importance of cleanly defined interfaces. They also
learn collaboration skills, such as relying on other teams, respecting
previously defined interfaces, using stub functions, merging previ-
ously separated pieces of code, etc. As their first non-trivial design
experience, they are exposed to potential problems during collabo-
rative work, an important skill for subsequent projects.

PF2 Design Fest. The goal of the second DF is to introduce
the students to the complexity of designing a non-trivial object-

3See htpp://www.seaside.st/

oriented system. The task is to design an elevator system involving
several elevators, floors, sensors, etc. To drive the design process,
we use CRC cards, a responsibility-driven design technique [7] in
which the students define meaningful abstractions and write them
on index cards. Subsequently, each student impersonates the ac-
tual objects that would be part of the system, acting out multiple
scenarios. Each group of 4 students is assigned an instructor (pro-
fessor or assistant) who asks questions to force the students to re-
fine their design and think of exceptions. With the finished CRC
cards the students are asked to write stub and test code, i.e., they
implement the design without a working implementation, but with
well-defined interfaces.

Expert lectures. In parallel with the primary lectures that build
programming and design skills, we introduce a set of expert lec-
tures to inject important concepts that do not fit with the main flow
of the lectures. These introduce key concepts as needed (e.g., ba-
sic UML at the beginning of the group project). We also take ad-
vantage of having two professors co-teaching the course, with one
continuing the main series of lectures, and the other taking care of
the expert lectures.

Group projects. As one of our goals is to develop skills to work
in a team, group projects occupy significant positions in the cur-
riculum. Such projects have several advantages. First, they are
much larger than a single-person assignment, making them closer
to real-life experiences. Second, by working in a group, students
are able to pick a direction in which to specialize their knowledge,
e.g., combining one student’s special interest in learning GUI pro-
gramming and another’s in networking. Third, students gain further
experience in what it means to work in groups, how to address the
non-programming requirements, and how to succeed with others.

In both semesters project topics are loosely defined by the in-
structors and refined by the students. First semester Scheme project
ideas are mostly games, such as a virtual pet and a strategy game,
all requiring the use of the Scheme graphics library. Java projects
in the second semester are more “serious”, featuring, for example,
a learning game for school children and a personal media manage-
ment system. By offering multiple project options, the students
chose topics interesting to them and therefore motivating. Interest-
ingly, one of the groups chose to include a networking component
as part of their project4, implementing a client-server strategy game
in Java.

The group projects include weekly intermediate check points for
design review or prototype presentation. The final deliverable in-
cludes significant written documentation, and a final, public pre-
sentation. It should also be noted that the duration of the projects
increases from first semester (3 weeks) to second (5 weeks), reflect-
ing both the increased maturity of the students to manage their time
and the complexity of the projects.

To ensure groups make progress and stay on track, we assign a
teaching assistant to follow each group. These assistants are present
during all intermediate check points, and act as consultants to re-
solve complex problems. Course professors are also present during
many of the check points, often taking the role of the customer.
The complementary roles of consultant and customer gives the stu-
dents the required amount of support and additional motivation to
succeed and produce a solid project.

The final presentation is advertised to all faculty members as well
as some VIPs (e.g., in the first year, the university president and a
visiting professor from the USA attended), emphasizing to the stu-
dents the importance of presentation skills in addition to program-
ming. First semester presentations are primarily non-technical, mim-

4The Networking course is taught in parallel to PF2.

Figure 2: Screenshots from projects. Scheme (left): virtual pet, role-playing game. Java (right): media management, learning game.

icking high-level, managerial product demo presentations. In the
second semester, we explicitly require presentations to include a
technical component, e.g., some groups opt to present UML dia-
grams and code snippets. Attendees at all presentations have been
very impressed by the complexity of the projects (see example
screenshots in Figure 2) as well as the professionalism conveyed
by first year students.

4. DISCUSSION
Next we offer our evaluation of key elements of the courses and

applicability in other environments.
Multiple languages. It is worth emphasizing that our motivation

is to bring students with little or no programming background to a
point where they are competent system designers and developers
using Java as a programming tool. Our goal is not to create ex-
pert Scheme and Smalltalk programmers, although the students do
become proficient enough to produce significant projects and sev-
eral did return to Smalltalk for individual project work later in their
studies. Our use of multiple languages, instead, serves to introduce
each concept in the best way. As such, our sequence, and the mix
of exercises and projects obtained the desired goal.

End-of-semester projects. From a didactic perspective, placing
a significant project at the end of both semesters clearly demon-
strated the knowledge and skills acquired during the semester. From
the student perspective, it served as motivation to learn, and was
also a point of concrete satisfaction at the end of the course. Over-
all, the outcome of the projects exceeded our initial expectations.

Scalability. As designed, our course requires extensive inter-
actions among the students and teaching staff. For example, to
support 30 students, we employed two assistants throughout the
semester and required additional help for the PF2 DF. During the
group projects, the assistants spent significant time each week serv-
ing as consultants to the groups. Teaching larger student bodies
would most likely require creating multiple sessions, as the tech-
niques presented here, especially the group projects and DFs, re-
quire interaction that is only possible with small class sizes.

Notably, however, the use of the three-language sequence is not
inherently unscalable. Instead, the fact that both PF courses are
worth more credits than a typical course (8 each as opposed to 6),
gave us ample time per week to cover the material, both in and out
of lecture.

Integration with other courses. A significant benefit of the
Lugano program is the Atelier in which essential topics such as
CSV, LATEX, and shell manipulation are taught in the first semester.

The PF courses can therefore assume uniform knowledge among
the students. With respect to the other academic courses, the stu-
dents were encouraged to apply their knowledge in the projects.
For example, some groups included a networking component to
their group project, building on the networking course knowledge
from the same semester.

5. CONCLUSION
This paper presented an innovative program to teach program-

ming fundamentals in the first year, promoting good design and
teamwork skills in addition to algorithmic skills. Our approach re-
volves around the flexibility of our faculty which allows us to eas-
ily introduce new teaching elements in the curriculum, and to use
the most relevant tools for the task at hand. Our results are very
positive, as the students enjoyed the course and demonstrated it by
implementing non-trivial projects, far above the level of projects
usually done by first-year students. Finally, based on observations
by ourselves and our colleagues on the faculty, after completion of
this PF sequence, the students are more than adequately prepared to
face future courses in topics such as algorithms and data structures,
net-centric computing, and software engineering.

6. REFERENCES
[1] S. A. Bloch. Scheme and java in the first year. In Proceedings

of CCSC 2000 (5th CCSC northeastern conference on the
journal of computing in small colleges, pages 157–165, ,
USA, 2000. Consortium for Computing Sciences in Colleges.

[2] B. Eckel. Thinking in Java. Prentice Hall PTR, Upper Saddle
River, 1998.

[3] M. Felleisen, R. B. Findler, M. Flatt, and S. Krishnamurthi.
How to Design Programs. The MIT Press, 2001.

[4] M. Hitz and M. Hudec. Modula-2 versus c++ as a first
programming language—some empirical results. In ACM
SIGCSE Bulletin. ACM, 1995.

[5] M. Jazayeri. The education of a software engineer. In
Proceedings of ASE 2004 (20th International Conference on
Automated Software Engineering, pages 18–27. IEEE CS
Press, 2004.

[6] S. Skublics and P. White. Teaching smalltalk as a first
programming language. In ACM SIGCSE Bulletin. ACM,
1991.

[7] R. Wirfs-Brock and A. McKean. Object Design — Roles,
Responsibilities and Collaborations. Addison-Wesley, 2003.

c©ACM, 2008. This is the author’s version of the work. It is
posted here by permission of ACM for your personal use. Not for
redistribution. The definitive version was published in Proceed-
ings of the 30th International Conference on Software Engineering
(ICSE), Education Track http://doi.acm.org/10.1145/1368088.1368199

