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Abstract. Realizability – checking whether a specification can be implemented
by an open system – is a fundamental step in the design flow. However, if the spec-
ification turns out not to be realizable, there is no method to pinpoint the causes
for unrealizability. In this paper, we address the open problem of providing diag-
nostic information for realizability: we formally define the notion of (minimal)
explanation of (un)realizability, we propose algorithms to compute such explana-
tions, and provide a preliminary experimental evaluation.

1 Introduction

The role of properties in the design flow is becoming increasingly important [pro,Age07].
Properties are used to describe design intent and to document designs and components,
and play a fundamental role both in dynamic and static verification. As a result, re-
search has been devoted to the development of new algorithms and tools for require-
ments analysis, in order to guarantee that the starting point of the process is indeed
free from flaws. Typical forms of analysis are consistency checking, and compatibility
with scenarios [PSC+06,BCP+07]. However, most property verification algorithms and
tools are currently lacking the ability to provide diagnostic information that can support
the debugging. This is potentially a major shortcoming. In fact, the practical success
of model checking is tightly related to the ability of producing counterexamples (e.g.,
[CV03]): when the system violates a requirement, model checking algorithms are able
to provide a simulation trace witnessing the violation, which may help the designer to
find suitable fixes.

In this paper, we address the problem of providing diagnostic information for the
realizability of the specification of an open system (e.g., a component). In this set-
ting, requirements are typically separated in assumptions (i.e., the admissible behaviors
of the environment), and guarantees (i.e., the behaviors must be implemented by the
system-to-be). Intuitively, realizability is the problem of checking the existence of a
system implementing the required guarantees, given that the environment can do what-
ever allowed by the assumptions.

We make two contributions. First, we tackle the problem of precisely characterizing
the idea of diagnostic information for realizability problems. We propose notions for ex-
planation and minimal explanation of (un)realizability. This issue is in fact non trivial:
realizability could be achieved by relaxing the assertions on the system, or strength-
ening the assumptions on the environment. These notions can be also used to provide



diagnostic information for realizable specifications, i.e., we allow pinpointing minimal
subsets of the specification that might be covered by the remaining part.

Second, we propose two methods to extend a practical, symbolic algorithm for re-
alizability, in order to extract explanations and minimal explanations in case of (un)re-
alizability. One of the algorithms is based on a explicit search in the space of subsets
of the specification, and is able to compute one explanation at a time. The other one
is fully symbolic in nature, and relies on the idea of activation variables to extract all
explanations. We implemented the methods within the NUSMV system, for the class of
Generalized Reactivity(1) [PPS06] specifications, and we tested them on some indus-
trial cases. The symbolic computation of all the explanations of (un)realizability turns
out to be computationally expensive. On the other hand, the explicit algorithm can pro-
duce, with moderate performance penalty, explanations that are significantly smaller -
sometimes more than an order of magnitude - than the original specifications.

Related Work. To the best of our knowledge, the notion of explanation of realiz-
ability has never been defined in terms of requirements. Production of diagnostic in-
formation in case of unrealizability was addressed in [TA99,BSL04,BCD+07] and in
[Yos04]. In [TA99,BSL04,BCD+07] a counter-strategy is constructed showing how the
environment can force the system to violate its guarantees. Yoshiura [Yos04] developed
heuristics to classify reasons for unrealizability based on notions that are harder to fulfil
than temporal satisfiability but easier than realizability. In both cases, (i) the diagnostic
information is “global”, i.e., it takes into account all the input problem, and (ii) the link
to the requirements in the original problem is lost. Our approach can complement both
[TA99,BSL04,BCD+07] and [Yos04] by providing a smaller, yet unrealizable specifi-
cation to work on. In particular, a counter-strategy might exploit more than one source
of unrealizability. Our approach can help to obtain a more focused counter-strategy. In
terms of techniques, the fully symbolic algorithm is inspired by the idea of activation
variables for the case of Boolean satisfiability [LS04]. Closely related is also the ex-
tension to the case of unsatisfiable core for LTL specifications proposed in [CRST07b],
for the less complex case of satisfiability. Finally, there is a large body of work on fault
localization and explanation in a verification context, where both a program and a (po-
tentially implicit) specification are given. We refer the reader to the section on related
work in Groce’s Ph.D. thesis [Gro05] for a survey.

Document structure. In Sect. 2 we define some technical background. In Sect. 3,
we informally discuss and formalize the notion of explanation. In Sect. 4, we present
the explanation-extracting algorithm. In Sect. 5, we discuss the implementation and
present some experimental evaluation. Finally, in Sect. 6, we draw some conclusions
and outline directions for future work.

2 Preliminaries

2.1 Synthesis of open controllers

We are interested in the question of realizability of an LTL property [PR89,ALW89]. 3

We start from two disjoint sets E and S of input and output signals respectively, and

3 We assume the reader being familiar with LTL syntax and semantics.
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from a formula ϕ expressed in LTL over atomic propositions on E∪S (written ϕ(E ,S)).
E is the set of variables controlled by the environment, while S is the set of variables
controlled by the system. The realizability problem for a property ϕ consists of check-
ing whether there exists a program such that its behavior satisfies ϕ [PR89]. An LTL
formula ϕ(E ,S) is then realizable iff there exists such a program. Properties for which
such a program exists are called realizable or implementable. Dually, properties for
which such a program does not exist are called not realizable or unrealizable.

The realizability problem can be formalized as a two player game among the system
we are going to realize and the environment: the system plays against the environment
in such a way that at every step of the game the environment moves and then the system
tries to move by producing behaviors compatible with the property. The system wins
if it produces a correct behavior regardless of the behavior of the environment. In this
framework, checking for realizability amounts to check for the existence of a winning
strategy for the system in the corresponding game. This is tackled by generating from
the property a deterministic Rabin automaton using the Safra construction [Saf88]. This
automaton is interpreted as a two player game among the system and environment and
it is traversed as to find a witness of the non emptiness of the language of the automaton
(which corresponds to a correct implementation of the given property) [PR89].

2.2 Assumptions and Guarantees

Practically a specification is often represented with two distinguished sets – a set of
assumptions A and a set of guarantees G – plus a function f that turns such a set of
constraints into an actual temporal formula ϕ using Boolean and temporal connectives.
Under this assumption a specification is given as a tuple 〈A,G〉. Intuitively, assumptions
are those constraints which the environment is supposed to obey to and guarantees are
those constraints which the system has to satisfy. The function f has to have such a
form that realizability is preserved by adding assumptions to or removing guarantees
from an already realizable specification and, conversely, unrealizability is preserved by
removing assumptions from or adding guarantees to an unrealizable specification. Sim-
ilarly, adding a valid constraint to either assumptions or guarantees must not influence
the realizability of a specification.4 Note, that both A and G may be structured, such
that f may not treat all elements of A and G in the same way. In the conceptual part of
this work in Sect. 3 we are not concerned with the exact nature of the translation and
view A and G as flat sets of atomic elements; only when we consider a concrete class of
specifications (see below) for implementation we look into the structure of assumptions
and guarantees. We denote the temporal formula resulting from 〈A,G〉 by applying f
with φ〈A,G〉 = f(〈A,G〉). We say that 〈A,G〉 is realizable iff φ〈A,G〉 is realizable.

2.3 Synthesis of GR(1) properties

The high complexity established in [PR89] and the intricacy of Safra’s determinization
construction have caused the synthesis process to be identified as hopelessly intractable
and discouraged many practitioners from ever attempting to implement it. However,

4 In this paper we need this property only in Sect. 4.2.
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there are several classes of properties restricted to particular subsets of LTL, which can
be synthesized with more efficient algorithms. One of the most recent and advanced
results is achieved in [PPS06] where for the class of Generalized Reactivity(1) spec-
ifications (from now on referred to as GR(1) specification) is presented a (symbolic)
algorithm for extracting a program from a GR(1) specification that runs in time poly-
nomial in the size of the state space of the design. The class of GR(1) properties is
sufficiently expressive to provide complete specifications of many designs [PPS06].

A GR(1) specification has the form 〈A,G〉 = ({ϕE
I , ϕ

E
R, ϕE

ψ}, {ϕS
I , ϕS

R, ϕS
ψ}). 5

For α ∈ {E ,S}, ϕαI , ϕαR, ϕαψ represent the initial conditions, the transition relation and
the liveness or fairness conditions of the environment and system, respectively. They
are such that:

– ϕαI - a formula of the form
∧
i Ii where every Ii is a propositional formula over

signals (ϕE
I is over E and ϕS

I is over E ∪ S).
– ϕαR - temporal formulas of the form

∧
i Ri where every Ri is a propositional for-

mula over signals E ∪ S and expressions of the form X v where v ∈ E if α = E
and v ∈ E ∪ S if α ∈ S.

– ϕαψ - temporal formulas of the form
∧
iGFAi where Ai is propositional formula

over signals E ∪ S.

Intuitively, the play is initialized in such a way that the environment chooses initial
values for its signals as to satisfy ϕE

I , and the system initializes its signals to satisfy ϕS
I .

At every consecutive step of the play at first the environment assigns its signals, trying
to satisfy the environment transition relation ϕE

R, and then the system does the same
with its signals and its transition relation ϕS

R. For an infinite behavior the environment
and the system try to satisfy their liveness conditions ϕE

ψ and ϕS
ψ , respectively. The

player who first violates its constraints loses.
Realizability of a GR(1) specification can be reduced to the problem of computing

the set of winning states WS in a two-player game among the environment and the
system and then checking WS against initial conditions [PPS06]. In the following we
will use the algorithm of [PPS06] to check for the realizability of a GR(1) specification
〈A,G〉.

3 Diagnosing (Un)Realizability

In this section we discuss what information can be returned to a developer in the case a
given specification 〈A,G〉 turns out to be either unrealizable or realizable. We focus on
“zooming into” the specification by pointing out fragments of the specification that are
by themselves (un)realizable, in order to facilitate the understanding of the problem.

We therefore suggest to use a specification 〈A′, G′〉 as an explanation for a spec-
ification 〈A,G〉 where A′, G′ are subsets of A,G. We first formalize minimality and
maximality constraints on A′ or G′. We then introduce a notion of unhelpfulness of as-
sumptions or guarantees in an explanation, where unhelpful assumptions or guarantees
can be removed from an explanation. We illustrate the concept with an example.

5 We refer the reader to [PPS06] for details on the corresponding LTL formula.
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3.1 Explanations for (Un)Realizability

We first notice that assumptions and guarantees can be viewed as interacting, but op-
posing forces. As outlined in Sect. 2, adding assumptions or removing guarantees will
“push” a specification towards realizability. Conversely, a realizable specification may
become unrealizable when deleting assumptions or adding guarantees. These concepts
are formalized as follows.

Definition 1 ((un-) fulfillable, (in-) sufficient). Let A be a set of available assump-
tions, let G be a set of available guarantees, and let A ⊆ A and G ⊆ G.

If a specification 〈A,G〉 is realizable, we say that G is fulfillable w.r.t. A, and,
conversely, A is sufficient w.r.t. G. Otherwise, G is unfulfillable w.r.t. A, and A is insuf-
ficient w.r.t. G, respectively.

G is minimally unfulfillable w.r.t. A iff 〈A,G〉 is unrealizable and removal of any
element of G leads to realizability: ∀g ∈ G . 〈A,G \ {g}〉 is realizable.

G is maximally fulfillable w.r.t. A in G iff 〈A,G〉 is realizable and addition of any
element of G \G leads to unrealizability: ∀g ∈ G \G . 〈A,G ∪ {g}〉 is unrealizable.

A is minimally sufficient w.r.t. G iff 〈A,G〉 is realizable and removal of any element
of A leads to unrealizability: ∀a ∈ A . 〈A \ {a}, G〉 is unrealizable.

A is maximally insufficient w.r.t. G in A iff 〈A,G〉 is unrealizable and addition of
any element of A \A leads to realizability: ∀a ∈ A \A . 〈A ∪ {a}, G〉 is realizable.

All above definitions are also transferable to a whole specification, i.e., a specification
〈A,G〉 is maximally insufficient iff A is maximally insufficient w.r.t. G, etc.

Why is separate terminology introduced for assumptions and guarantees? After all,
if a specification 〈A,G〉 is unrealizable, then A is insufficient w.r.t. G and G is unfulfil-
lable w.r.t. A (similarly for a realizable specification). However, while A is insufficient
w.r.t. G iff G is unfulfillable w.r.t. A, A might, e.g., be maximally insufficient w.r.t. G
although G is unfulfillable but not minimally unfulfillable w.r.t. A. In other words, min-
imality and maximality require introduction of separate terminology for both sides.

We now show how the above definitions can provide an explanation for an
(un)realizable specification 〈A,G〉.

Minimally Unfulfillable Sets of Guarantees First, assume that 〈A,G〉 is unrealizable.
To understand the nature of the problem, the developer needs to see which sets of guar-
antees are not supported by sufficient assumptions or which sets of guarantees are con-
flicting. Hence, we suggest to return an explanation 〈A,G′〉 such that G′ ⊆ G is mini-
mally unfulfillable. Each such G′ is a minimal set of guarantees such that either A is not
strong enough to realize G, or the elements of G are in conflict with each other. Clearly,
there may be several such sets. The quest for minimality is based on the intuition that
if a guarantee does not contribute to making a specification unrealizable then it can be
omitted from the explanation.

Maximally Fulfillable Sets of Guarantees While an explanation of the previous kind
helps to find the cause of unrealizability, it does not immediately suggest a fix. Our
second suggestion provides fixes in the restricted case that a fix is only allowed to
remove guarantees. Obviously, such fix should remove as few guarantees as possible
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to achieve realizability. Hence, we suggest to provide the developer with a maximally
fulfillable set of guarantees G′ as an explanation. Notice that, addition of any g ∈ G\G′

will make 〈A,G′ ∪ {g}〉 unrealizable. I.e., the complement of each such G′ constitutes
a minimal set of guarantees that, when removed from G, leads to realizability.

Note that, the distinction to minimally unfulfillable sets of guarantees as an expla-
nation becomes particularly interesting when there is more than one set of unfulfillable
guarantees. In that case a minimal fix is easier to see by providing the developer with a
maximally fulfillable set of guarantees rather than with several minimally unfulfillable
sets of guarantees as in the latter case the developer has to figure out herself which
combinations of guarantees need to be removed to avoid all “unfulfillabilities”.

A slightly different scenario where maximally fulfillable sets of guarantees can help
is finding out the set of guarantees that may be realized with a given set of assumptions,
i.e., strengthening the guarantees that the system under design will provide. In this
case, given a set of available guarantees, G ⊃ G, it is enough to compute the maximally
fulfillable sets of guarantees for 〈A,G〉.

Minimally Sufficient Sets of Assumptions If 〈A,G〉 is realizable, the need for debugging
information is less urgent. Still, the developer might benefit from additional information
that helps her understanding. In particular, we suggest to point out minimal sets of
assumptions A′ that, on their own, are sufficient to realize a given set of guarantees
G. If 〈A,G〉 is the original specification, A′ may help to reduce the assumptions the
environment has to fulfill. Another scenario is that G is only a subset of the guarantees
under consideration. Here, the developer might want to understand which subset(s) of
assumptions A′ are responsible for realizability of this particular set of guarantees. It’s
easy to see that in both cases A′ is a set of minimally sufficient assumptions.

If 〈A,G〉 turns out to be unrealizable and the set of available assumptions has not
been exhausted (i.e., A ⊂ A), minimally sufficient sets of assumptions for 〈A, G〉 can
help to find a minimal strengthening of A such that G can be realized.

Maximally Insufficient Sets of Assumptions We have not found a good intuition on how
to use these as a debugging aid. We omit such sets from further consideration.

3.2 Criteria for Unhelpful Parts of an Explanation

Till now we proposed to remove constraints either only from assumptions or only from
guarantees. We now proceed to remove constraints from the remaining side of an expla-
nation. We first argue why constraints can be removed from both sides of a specification.
We then formulate a criterion to identify helpful and unhelpful constraints.

Removing Constraints from the Remaining Side of an Explanation As argued
above, removing guarantees from an unrealizable specification or removing assump-
tions from a realizable specification is a natural approach to obtain a core of a specifica-
tion that explains its (un)realizability. However, previously we have only modified one
side of a specification to obtain an explanation. As mentioned, removing assumptions
pushes towards unrealizability and removing guarantees pushes towards realizability.
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Hence, one might think that an explanation for unrealizability (in the form of a min-
imally unfulfillable specification) should contain the full set of assumptions A and,
similarly, an explanation for realizability (in the form of a minimally sufficient specifi-
cation) should contain the full set of guarantees G. Note, though, that an assumption or
a guarantee might be redundant. In other words, it might be covered by the remaining
set of assumptions or guarantees. Moreover, some assumptions or guarantees might be
irrelevant w.r.t. a given explanation, i.e., they may have no influence on the behavior of
a specification, we are interested in. We believe that the developer should be informed
about such assumptions and guarantees. Below we expand that idea for the three types
of explanations proposed in Sect. 3.1.

Minimally Unfulfillable Sets of Guarantees The aim of a minimally unfulfillable ex-
planation 〈A,G〉 is to show a conflict among the set of guarantees G or the lack of
assumptions required for realizability of G. It is possible that some of the assumptions
in A do not contribute to that aim, i.e., they do not influence the conflict among, or the
realizability of, the guarantees G. Such assumptions may be removed from an explana-
tion without losing valuable information, thereby making it simpler for understanding.

Maximally Fulfillable Sets of Guarantees The purpose of a maximally fulfillable expla-
nation 〈A,G〉 is to show which set(s) of guarantees can be realizable with a given set of
assumptions or which set of guarantees are enough to remove to make the specification
realizable. If removing an assumption a does not change realizability of an explanation,
i.e., 〈A \ {a}, G〉 is realizable, then presence of such an assumption does not influence
the property of the set G being maximally fulfillable. Indeed, since 〈A,G ∪ {g}〉 is un-
realizable for any g ∈ G \ G then 〈A \ {a}, G ∪ {g}〉 is also unrealizable for any a
because removing an assumption cannot make an unrealizable specification realizable.
Therefore, if such an assumption is removed an explanation still fulfills its purpose and
shows a maximal set of realizable guarantees.

Minimally Sufficient Sets of Assumptions The purpose of a minimally sufficient expla-
nation 〈A,G〉 is to point out a set of assumptions A that is enough to make a given set
of guarantees G realizable such that each assumption a ∈ A is essential for realizabil-
ity. This case is symmetrical to the case of minimally unfulfillable set of guarantees,
i.e., not every guarantee may be useful in such an explanation — some guarantees may
be realizable independent of the assumptions, or one assumption may be essential for
realizability of several guarantees therefore only one of such guarantees may be left in
the explanation to show necessity of that assumption.

Formalization We are now ready to formulate a criterion of when a constraint in an ex-
planation should be considered unhelpful. Our intuition is as follows. Let 〈A,G〉 be an
explanation, let a ∈ A be an assumption. We say that a is helpful iff there is some sub-
set of guarantees G′ ⊆ G s.t. 〈A,G′〉 is realizable, while 〈A \ {a}, G′〉 is not. In other
words, there is a subset of guarantees G′ s.t. a makes the difference between realizabil-
ity and unrealizability for that subset (w.r.t. the given set of assumptions A). Similarly,
a guarantee g ∈ G is helpful iff there is at least one subset of assumptions A′ ⊆ A
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s.t. g make the difference between realizability and unrealizability: 〈A′, G \ {g}〉 is
realizable while 〈A′, G〉 is not. We formalize that intuition below.

Definition 2 ((un-) helpful). Let 〈A,G〉 be a specification.

1. An assumption a ∈ A is unhelpful if
∀G′ ⊆ G . (〈A,G′〉 is realizable ⇔ 〈A \ {a}, G′〉 is realizable.)

2. A guarantee g ∈ G is unhelpful if
∀A′ ⊆ A . (〈A′, G〉 is realizable ⇔ 〈A′, G \ {g}〉 is realizable.)

3. An assumption or a guarantee is helpful iff it is not unhelpful.

The next proposition shows that Def. 2 is well-behaved in the following sense. If
〈A,G〉 is an explanation and A′ ⊂ A is obtained from A by a sequence of removals of
unhelpful assumptions A′′ (by a sequence of applications of Def. 2), then each of the
removed assumptions in A′′ is unhelpful also in A. Moreover, the assumptions in A′′

could have been removed from A in any order. The case for guarantees is similar.

Proposition 1.
1. Let 〈A0 = A,G〉, 〈A1 = A0 \ {a0}, G〉, 〈A2 = A1 \ {a1}, G〉, . . . , 〈A′ = Ak \
{ak}, G〉 be a sequence of explanations s.t., for all 0 ≤ i ≤ k, each ai is unhelpful
in 〈Ai, G〉. Let A′′ ⊆ A \A′, let a ∈ A′′. Then a is unhelpful in 〈A′ ∪A′′, G〉.

2. Let 〈A,G0 = G〉, 〈A,G1 = G0 \ {g0}〉, 〈A,G2 = G1 \ {g1}〉, . . . , 〈A,G′ = Gk\
{gk}〉 be a sequence of explanations s.t., for all 0 ≤ i ≤ k, each gi is unhelpful in
〈A,Gi〉. Let G′′ ⊆ G \G′, let g ∈ G′′. Then g is unhelpful in 〈A,G′ ∪G′′〉.
The following proposition yields a practical way to remove unhelpful constraints

from the remaining side of an explanation. Given 〈A,G〉 minimally unfulfillable, we
suggest to remove assumptions from A until the result is not minimally unfulfillable
any more (resp., if 〈A,G〉 is minimally sufficient, remove guarantees from G until the
result is not minimally sufficient).

Proposition 2.
1. Let 〈A,G〉 be a minimally unfulfillable specification. a ∈ A is unhelpful in A iff
〈A \ {a}, G〉 is minimally unfulfillable.

2. Let 〈A,G〉 be a minimally sufficient specification. g ∈ G is unhelpful in G iff
〈A,G \ {g}〉 is minimally sufficient.

Our next proposition shows the coincidence between Def.s 1 and 2. In particular,
it shows that an unrealizable specification 〈A,G〉 contains no unhelpful guarantees iff
it is minimally unfulfillable and a realizable specification 〈A,G〉 contains no unhelpful
assumptions iff it is minimally sufficient.

Proposition 3.
1. Let 〈A,G〉 be unrealizable. g ∈ G is unhelpful in G iff 〈A,G \ {g}〉 is unrealizable.
2. Let 〈A,G〉 be unrealizable. G is minimally unfulfillable iff all g ∈ G are helpful.
3. Let 〈A,G〉 be realizable. a ∈ A is unhelpful in A iff 〈A \ {a}, G〉 is realizable.
4. Let 〈A,G〉 be realizable. A is minimally sufficient iff all a ∈ A are helpful.

Thus Def. 2 can be used to obtain minimally unfulfillable explanations from unrealiz-
able specifications (by removing unhelpful guarantees) and minimally sufficient expla-
nations from realizable specifications (by removing unhelpful assumptions).

8



Explaining Unrealizability — a Minimal Conflict
1. Assume 〈A, G〉 unrealizable.
2. Find some G′ ⊆ G s.t. 〈A, G′〉 is minimally unfulfillable.
3. Find a minimal A′ ⊆ A s.t. 〈A′, G′〉 is minimally unfulfillable.
4. Return 〈A′, G′〉.

Start with an unrealizable specification. First, remove unhelpful guarantees, then remove un-
helpful assumptions. Now, every single guarantee in G′ is required for a conflict; moreover,
removing any assumption from A′ leads to additional conflict(s), each involving fewer guaran-
tees.

Explaining Unrealizability — a Minimal Fix
1. Assume 〈A, G〉 unrealizable.
2. Find some G′ ⊆ G s.t. 〈A, G′〉 is maximally fulfillable.
3. Find some A′ ⊆ A s.t. 〈A′, G′〉 is minimally sufficient.
4. Return 〈A′, G′〉.

Start with an unrealizable specification. First, remove just enough guarantees to make the speci-
fication realizable, then remove unhelpful assumptions. Now, adding any guarantee or removing
any assumption leads to unrealizability. Moreover, G \G′ is a minimal fix to make the original
specification 〈A, G〉 realizable.

Explaining Realizability
1. Assume 〈A, G〉 realizable.
2. Find some A′ ⊆ A s.t. 〈A′, G〉 is minimally sufficient.
3. Find a minimal G′ ⊆ G s.t. 〈A′, G′〉 is minimally sufficient.
4. Return 〈A′, G′〉.

Start with a realizable specification. First, remove unhelpful assumptions, then remove unhelp-
ful guarantees. Now, every single assumption in A′ is required for realizability; removing any
guarantee in G′ makes one or more assumptions unnecessary for realizability.

Fig. 1. A summary of our approach.

Putting the Pieces Together In Fig. 1 we show the approach that applies the previous
results according to the types of explanations suggested in Sect. 3.1.

3.3 Methodology

Unsatisfiable Assumptions and Guarantees Sometimes subsets of assumptions or
guarantees may be temporally unsatisfiable. Such situations should be pointed out to
the developer; however, as these situations may not be uniquely identifiable from the
explanations suggested above, a separate check has to be performed. Satisfiability can
be checked in various ways. A detailed treatment is out of the scope of this work. We
therefore assume that the specification has been checked for satisfiability (in particular,
the checks suggested in [Yos04]) before applying our method.

Removing Unhelpful Constraints When a specification is checked for unhelpful con-
straints, it is important to note that several constraints that have been found unhelpful
cannot be removed at once. For example, if for a specification 〈A,G〉 the individual
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assumptions a1, a2 ∈ A are found to be unhelpful, they should not be removed at once.
Rather, it is necessary to remove one of them (e.g., a1) and then recheck the second
assumption a2 for being unhelpful in 〈A \ {a1}, G〉. Otherwise, the result can be incor-
rect. For example, if a1 and a2 are equivalent, they will always be unhelpful. Never-
theless, removing both of them can change realizability of the specification. Therefore,
constraints can be checked and removed (if found unhelpful) only one by one.

Sensitivity of (Un)helpfulness Whether a constraint is (un)helpful according to Def. 2
depends on (1) the set of assumptions and guarantees to start with and (2) the way these
assumptions and guarantees are formulated.

Clearly, an assumption (resp. a guarantee) can switch from being unhelpful to being
helpful when it is considered as part of a smaller set of assumptions (resp. guarantees).
An obvious example are two sets of assumptions {a1, a2} and {a1} s.t. a1 and a2 are
equivalent.

Note, however, that the same can happen by considering larger sets of assumptions
or guarantees. As an example, an assumption a ∈ A might not be sufficient on its
own to make the difference between realizability and unrealizability of some set of
guarantees G. However, by adding other assumptions A′, a might be able to achieve
its intended effect. In other words, both 〈A \ {a}, G〉 and 〈A,G〉 are unrealizable, as
is 〈A ∪A′ \ {a}, G〉; however, 〈A ∪A′, G〉 is finally realizable. Note also that if in a
minimally unfulfillable specification 〈A,G〉 G has size 1 (i.e., even a single guarantee
is unfulfillable), then all assumptions in A will be termed unhelpful.

We finally give an example of how the precise formulation of a specification may
influence (un)helpfulness. Consider the set of environment variables E = {e0, e1} and
the set of system variables S = {s0}. Let A = {G¬e1}, G = {GF s0,G(e0 ∧ (e1 ↔
s0))}, and G′ = {GF s0,G e0,G(e1 ↔ s0))}. When seen as GR(1) specifications,
then 〈A,G〉 and 〈A,G′〉 are equivalent and unrealizable. A minimal conflict according
to Fig. 1 for 〈A,G〉 is 〈∅, {G(e0 ∧ (e1 ↔ s0))}〉, while 〈A,G′〉 admits two different
minimal conflicts 〈∅, {G e0}〉 and 〈{G¬e1}, {GF s0,G(e1 ↔ s0))}〉.

3.4 Examples

Let us consider the following example with the assumptions on the left and guarantees
on the right and e and s being an environment and a system variable (there may be other
constraints that do not speak about e and s):

a1 =̇ e g1 =̇ s
a2 =̇ G((X e) ↔ e) g2 =̇ G((X s) ↔ e)
a3 =̇ GF e g3 =̇ GF(¬s ∧ e)

. . . . . .

The specification is unrealizable with a minimal conflict explanation 〈A,G〉 =
〈{a3}, {g2, g3}〉. A minimally unfulfillable guarantee set G shows the reason of un-
realizability (i.e., the system cannot simultaneously make s equal to the previous value
of e and at the same time reach ¬s ∧ e) and that the initial condition g1 does not influ-
ence this conflict. The presence of the assumption a3 is enough to show this conflict. By
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removing a3 the explanation will not be minimally unfulfillable any more since it will
remain unrealizable even without g2 thereby losing the information about the original
conflict among guarantees g2 and g3. Thus a3 is required for the explanation.

4 Computing Explanations

In this section we describe our approach to computing explanations for specifications.
First we explain explicit algorithms that are aimed to compute one explanation for
a given specification, and we estimate their complexity. Then, we outline an alter-
native approach to computing explanations based on the use of activation variables
[LS04,CRST07b].

4.1 Explicit Algorithms

In the most simplistic setting we assume that there is an external realizability checker
considered as a black box and available for us as a function Realizable(〈A,G〉), which
takes a specification 〈A,G〉 and returns true iff the specification is realizable.

Among the possible kinds of explanations summarized in Fig. 1 let us begin with
an unrealizable specification and its explanation in the form of a minimal conflict. The
first step of the computation is to obtain a minimally unfulfillable set of guarantees. For
that it is enough to identify which guarantees after removal keep the specification un-
realizable. Propositions 1 and 3 establish that guarantees can be removed in any order.6

In Sect. 3.3 we noticed that a check for realizability has to be done after each removal
of any individual guarantee. As a result a simple algorithm to compute a minimally
unfulfillable explanation for a given specification 〈A,G〉 is:

function ComputeMinUnfulfil(〈A,G〉)
G′ := G;
foreach g ∈ G

if ¬Realizable(〈A,G′ \ {g}〉) then G′ := G′ \ {g};
return 〈A,G′〉;

The second step of obtaining a “good” explanation is to remove unhelpful assumptions.
Proposition 2 shows that it is enough to detect and remove assumptions whose removal
keeps the specification minimally unfulfillable. Notice that, similarly to the previous
algorithm it is necessary to check and remove only one assumption at every iteration.
Thus the simplest algorithm is:

function ComputeGoodMinUnfulfil(〈A,G〉)
A′ := A;
foreach a ∈ A

6 Note, though, that while the order of removal of guarantees in a particular set of unhelpful
guarantees G′ ⊆ G from G does not matter, it is still possible that there are different sets of
unhelpful guarantees G′ 6= G′′ such that both G \ G′ and G \ G′′ contain no unhelpful guar-
antees anymore (and similarly for assumptions). As a consequence, the algorithms presented
here find minimal but not necessarily minimum explanations.
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if MinUnfulfil(〈A′ \ {a}, G〉) then A′ := A′ \ {a};
return 〈A′, G〉;

where the predicate MinUnfulfil(〈A,G〉) returns true iff the specification 〈A,G〉 is
minimally unfulfillable:

MinUnfulfil(〈A,G〉) =̇ ∀g ∈ G . Realizable(〈A,G \ {g}〉)

Notice that, all above functions ComputeMinUnfulfil, ComputeGoodMinUnfulfil and
MinUnfulfil expect as input an unrealizable specification.

In the case of computing explanations for realizable specifications (see Fig. 1) the
corresponding algorithms are symmetric to the algorithms for unrealizable specifica-
tions explained above. Hence the functions ComputeMinSuffic, ComputeGoodMinSuffic
and the predicate MinSuffic are defined similarly as ComputeMinUnfulfil, Compute-
GoodMinUnfulfil, and MinUnfulfil, respectively, by switching realizability and unreal-
izability and the player whose constraints are minimized.

A minimal fix for an unrealizable specification according to Fig. 1 is also computed
in two steps. The first step is to identify a maximal set of guarantees making the speci-
fication realizable. The simplest algorithm is very similar to ComputeMinUnfulfil with
the exception that now the aim is to make the specification realizable and maximize the
number of guarantees:

function ComputeMaxFulfil(〈A,G〉)
G′ := ∅;
foreach g ∈ G

if Realizable(〈A,G′ ∪ {g}〉) then G′ := G′ ∪ {g};
return 〈A,G′〉;

The second step is to find a minimally sufficient set of assumptions. For that the function
ComputeMinSuffic defined above can be used.

To summarize, if a specification 〈A,G〉 is unrealizable and the cause
of unrealizability is of interest, then an explanation is computed as
ComputeGoodMinUnfulfil(ComputeMinUnfulfil(〈A,G〉)). If a minimal fix is re-
quired, then ComputeMinSuffic(ComputeMaxFulfil(〈A,G〉)) is computed. Otherwise,
if the specification 〈A,G〉 is realizable, the minimization of assumptions can be done
and ComputeGoodMinSuffic(ComputeMinSuffic(〈A,G〉)) is returned.

Complexity Let us assume that the upper bound on the time of checking the realizabil-
ity of a specification 〈A,G〉 is denoted as [〈A,G〉], and that this upper bound cannot
increase with the removal of some constraints from either A or G. Let A and G be the
number of assumptions and guarantees, respectively. Then it is easy to see that the up-
per bound on the time of computing a minimal conflict for an unrealizable specification
is (G + A ∗ G) ∗ [〈A,G〉], where G ∗ [〈A,G〉] is the upper bound for the first step and
A ∗G ∗ [〈A,G〉] is for the second one. Similarly, the upper bound on computing an ex-
planation for a realizable specification is (A+A∗G)∗ [〈A,G〉], and (A+G)∗ [〈A,G〉]
is the upper bound on computing a minimal fix for an unrealizable specification.
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Notice that, for both, good minimally unfulfillable explanations and good minimally
sufficient explanations, the number of realizability checks for computing a minimally
unfulfillable set of guarantees (resp. a minimally sufficient set of assumptions), is linear
in the number of constraints. While, for reducing the set of assumptions (resp. guaran-
tees), the number of realizability checks may be quadratic.

4.2 Algorithms with Activation Variables

An alternative approach to computing explanations inspired by [LS04,CRST07b] works
as follows. In a specification 〈A,G〉 for every constraint ci ∈ A ∪G a fresh activation
variable avi is created and then ci is substituted by avi → ci, obtaining in such a way
the specification 〈AAV , GAV 〉. Activation variables, differently from usual variables,
cannot change their values after their initialization, and they belong neither to the sys-
tem nor to the environment.

According to Sect. 2.2 the addition of the constraint true to assumptions or guar-
antees cannot change the realizability of a specification. Thus, setting an activation
variable avi to false disables the corresponding constraint ci in the specification
〈AAV , GAV 〉, whereas setting avi to true makes the constraint avi → ci behave the
same as the original one ci. If a realizability checker is able to find assignments to acti-
vation variables that make a specification (un)realizable, then using these assignments
we can directly identify which subsets of constraints cause (un)realizability of the spec-
ification. The algorithm for the class of GR(1) specifications mentioned in Sect. 2.3 is
able to do that without any modifications. Given a modified specification 〈AAV , GAV 〉
after finding winning states WS and checking it against initial conditions the obtained
result is not just a constant true or false but a formula over the activation variables.
Each assignment that makes that formula true identifies a subset of the constraints that
make the specification realizable.

The major difference from the previously described algorithms is that with activa-
tion variables one call to the realizability checker is enough to find all (un)realizable
subsets of the constraints. Unfortunately, experimental results showed that introduction
of new variables to the game slows down the realizability check considerably. As a re-
sult the computation of explanations with activation variables is often much slower than
using the explicit algorithms described in Sect. 4.1.

5 Experimental Evaluation

We implemented all the algorithms described in Sect. 4 plus the algorithm for GR(1)
synthesis [PPS06] within the framework of the NUSMV system [CCGR99]. We ap-
plied several optimizations to the algorithm for checking realizability of [PPS06] as to
improve the performance. For instance, we compute the set of reachable states of the
game structure and we use such set during the realizability check to restrict the search
only to reachable states. The different explicit algorithms have been also optimized as
to possibly re-use as much as possible results of previous checks. The implementation
of activation variables takes into account that they remain constant after the initial state.
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We evaluated our algorithms on two real-life specifications parametric on the num-
ber of components: the ARM AMBA AHB Arbiter 7 and the IBM GenBuf Controller 8.
We took these specifications from [BGJ+07]: since that paper is about showing feasi-
bility of synthesis, both specifications are realizable. We remark that, we were not able
to find real-life unrealizable specifications in the literature. As we have pointed out be-
fore, we can make a GR(1) specification unrealizable by adding constraints to ϕS

I , ϕS
R,

or φS
ψ , or by removing constraints from ϕE

I , ϕE
R, or ϕE

ψ . We simulate the cases of adding
to ϕS

R (referred to as W-GT), adding to ϕS
ψ (referred to as W-GF), and removing from

ϕE
ψ (referred to as WO-AF).

We ran the experiments on an Intel Xeon 3GHz bi-processor equipped with 4GB
of RAM running Linux. We fixed a memory limit to 1.5GB and a time-out to 1 hour.
We report “T” and “M”, respectively, when a time-out or a memory limit is reached.
We used BDD dynamic variable ordering during the search since this resulted in bet-
ter performances on average. All the experiments and an extended version of this pa-
per [CRST07a] are available from http://es.fbk.eu/people/roveri/tests/

vmcai08.
The table below shows the results of experiments with activation variables:

Specification
Name

Assumptions/
Guarantees Realizable

Time
Realizability

Time
Step 1

Time
Step 1 and 2

AMBA-1 8/52 R 0.14 0.24 212
AMBA-W-GF-1 8/53 U 0.02 587 T

The first three columns show the name of a specification, its size, and its realizability,
respectively. The fourth column gives the original realizability checking time (in sec-
onds). The fifth column lists the checking time if only assumptions (for a realizable
specification) or only guarantees (for an unrealizable one) are given activation vari-
ables — this corresponds to step 1 of the explicit algorithms. The last column shows
realizability checking times if all constraints are given activation variables — this cor-
responds to both steps of the explicit algorithms.

The above results show how significantly activation variables may slow down the
realizability check. This is the reason why only two specifications are in the table. We
remark that (1) the algorithm using activation variables computes minimum rather than
just minimal cores and (2) computing minimum cores by using activation variables has
incurred a significant performance penalty in [LS04,CRST07b], too. For the explicit
algorithms the execution time results are considerably better. Table 1 reports all the
results obtained with explicit algorithms.

The first column of Table 1 indicates the name of the specification. The original
specifications have names AMBA-n and GENBUF-n, where n is the number of com-
ponents of the described system. The modified ones have suffixes W-GF, W-GT, and
WO-AF as explained above. The following three columns list the size (the number of
assumptions and guarantees), the realizability and the time in seconds of checking the
realizability of a specification. The fifth column is the time required to remove unhelpful
guarantees from an unrealizable specification or unhelpful assumptions from a realiz-
able one. The sixth column shows the percentage of corresponding player’s constraints

7 ARM Ltd. AMBA Specification (Rev. 2). Available from www.arm.com, 1999.
8
http://www.haifa.ibm.com/projects/verification/RB Homepage/tutorial3/
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Specification
Name

Assumpt/
Guarant

Real-
izable

Time Re-
alizability

Time
Step 1

Reduction
Step 1

Time
Step 2

Reduction
Step 2

AMBA-1 8 / 52 R 0.14 0.25 75.0% (2 / 52) 1.93 65.4% (2 / 18)
AMBA-1-W-GF 8 / 53 U 0.02 0.24 92.5% (8 / 4) 0.02 87.5% (1 / 4)
AMBA-1-W-GT 8 / 53 U 0.02 0.21 96.2% (8 / 2) 0.01 100% (0 / 2)
AMBA-1-WO-AF 5 / 52 U 0.09 0.41 76.9% (5 / 12) 0.07 100% (0 / 12)
AMBA-2 11 / 80 R 1.22 2.97 63.6% (4 / 80) 64.1 68.8% (4 / 25)
AMBA-2-W-GF 11 / 81 U 0.19 1.06 88.9% (11 / 9) 0.12 72.7% (3 / 9)
AMBA-2-W-GT 11 / 81 U 0.17 0.97 91.4% (11 / 7) 0.06 81.8% (2 / 7)
AMBA-2-WO-AF 10 / 80 U 0.19 1.47 87.5% (10 / 10) 0.28 100% (0 / 10)
AMBA-3 14 / 108 R 14.3 35.2 85.7% (2 / 108) 26.7 86.1% (2 / 15)
AMBA-3-W-GF 14 / 109 U 0.51 4.31 94.5% (14 / 6) 0.09 92.9% (1 / 6)
AMBA-3-W-GT 14 / 109 U 0.39 2.92 97.2% (14 / 3) 0.04 100% (0 / 3)
AMBA-3-WO-AF 13 / 108 U 1.73 15.8 90.7% (13 / 10) 0.54 100% (0 / 10)
AMBA-4 17 / 136 R 74.9 292 64.7% (6 / 137) T -
AMBA-4-W-GF 17 / 137 U 1.17 23.9 89.8% (17 / 14) 0.71 82.4% (3 / 14)
AMBA-4-W-GT 17 / 137 U 0.86 12.5 92.0% (17 / 11) 0.29 88.2% (2 / 11)
AMBA-4-WO-AF 16 / 136 U 5.03 163 92.6% (16 / 10) 0.75 100% (0 / 10)
AMBA-5 20 / 164 R 525 T - - -
AMBA-5-W-GF 20 / 165 U 19.7 188 92.7% (20 / 12) 0.50 85.0% (3 / 12)
AMBA-5-W-GT 20 / 165 U 11.6 70.1 93.9% (20 / 10) 0.26 90.0% (2 / 10)
AMBA-5-WO-AF 19 / 164 U 14.9 126 93.9% (19 / 10) 0.80 100% (0 / 10)

GENBUF-5 28 / 81 R 0.15 1.23 46.4% (15 / 81) 39.2 54.3% (15 / 37)
GENBUF-5-W-GF 28 / 82 U 0.15 2.38 87.8% (28 / 10) 0.60 88.3% (3 / 10)
GENBUF-5-W-GT 28 / 82 U 0.22 3.25 86.6% (28 / 11) 0.75 82.1% (5 / 11)
GENBUF-5-WO-AF 27 / 81 U 0.12 1.48 87.7% (27 / 10) 0.63 96.3% (1 / 10)
GENBUF-10 43 / 152 R 1.22 12.3 53.5% (20 / 152) 522 62.5% (20 / 57)
GENBUF-10-W-GF 43 / 153 U 1.26 29.3 90.2% (43 / 15) 3.34 93.0% (3 / 15)
GENBUF-10-W-GT 43 / 153 U 4.53 56.1 89.5% (43 / 16) 3.81 88.4% (5 / 16)
GENBUF-10-WO-AF 42 / 152 U 0.44 9.60 93.4% (42 / 10) 1.74 97.6% (1 / 10)
GENBUF-20 73 / 368 R 3.65 90.7 58.9% (30 / 368) M -
GENBUF-20-W-GF 73 / 369 U 3.51 470 93.2% (73 / 25) 35.5 95.9% (3 / 25)
GENBUF-20-W-GT 73 / 369 U 1328 T - - -
GENBUF-20-WO-AF 72 / 368 U 2.21 115 97.3% (72 / 10) 7.78 98.6% (1 / 10)
GENBUF-30 103 / 683 R 24.4 920 61.2% (40 / 683) M -
GENBUF-30-W-GF 103 / 684 U 23.9 T - - -
GENBUF-30-W-GT 103 / 684 U T T - - -
GENBUF-30-WO-AF 102 / 683 U 7.61 842 98.5% (102 / 10) 22.7 99.0% (1 / 10)

Table 1. Computation of explanations using explicit algorithms.

that have been removed and the new size of the specification. The last two columns
are similar to the previous two columns but dedicated to the removal of unhelpful con-
straints of the remaining player.

The experiments show that a considerable number of constraints can be removed
from the explanations. For example, for unrealizable specifications the cause of unreal-
izability is found to be among only 9% (on average) of guarantees. Moreover, removing
92% (on average) of assumptions does not change the realizability of the obtained guar-
antees or any of their subsets. Thus before trying to understand and fix the problem a
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designer can decrease the size of a specification more than 10 times thereby decreasing
the effort required to detect and comprehend a bug.

For the real-life realizable specifications ARM AMBA AHB Arbiter and IBM Gen-
Buf Controller we found that about 64% of the assumptions are not required for the
realizability of the guarantees. This may indicate that the designers over-constrained
the environment in fear that the specification may become unrealizable at some state
of the design development. Another possible reason is that not all intended guarantees
have been added to the specification. In any case showing unnecessary assumptions can
be a valuable debugging information for designers. In fact, our approach unexpectedly
shows that going from AMBA-2 to AMBA-3 the number of required assumptions de-
creases from 4 to 2. The analysis of the generated core allowed us to detect a missing
constraint in the AMBA-3 aiming to forbid one assignment to the two Boolean signals
used to encode a three value variable. (See appendix B.4 for additional details.)

In our experiments the first step of explanation computation is on average 20 times
slower than the realizability checking of the original specification. The second step is
about 25 times slower than the original realizability checking. Though the time required
for computation is relatively large, it is not exceedingly large and is very likely to be a
good trade-off by potentially decreasing the time required for debugging a specification.

6 Conclusions and Future Works

In this paper we addressed the problem of providing diagnostic information in pres-
ence of formal analysis of requirements, and in particular in the case of realizabil-
ity. We showed that the problem is nontrivial, formally characterized it, and proposed
methods to automatically extract explanations, i.e., descriptions of the reasons for
(un)realizability. The experimental evaluation shows the potential of the approach.

It is worth noticing that, most of the concepts and algorithms developed in this paper
easily extend beyond realizability: given any computable Boolean-valued function r
on a couple of finite sets 〈A,G〉 such that r has the monotonicity properties stated in
Sect. 2.2, the definitions, theorems, and algorithms developed in Sect. 3 and 4.1 apply.

In the future, we plan to evaluate the integration of the explicit and the symbolic
methods. We will investigate the use of heuristic search in the space subsets of the
specification. We will also investigate the integration within a practical framework (e.g.,
contract-based design) where realizability comes into play (e.g., by composition of con-
tracts). Finally, given that the use of activation variables has proved to be both a power-
ful and expensive means to extract minimum cores for several problem classes involving
temporal logic, a separate investigation of how to improve this technique (e.g., by carry-
ing over results from the Boolean domain) seems worthwhile to us.
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A Proofs

Proposition 1.
1. Let 〈A0 = A,G〉, 〈A1 = A0 \ {a0}, G〉, 〈A2 = A1 \ {a1}, G〉, . . . , 〈A′ = Ak \
{ak}, G〉 be a sequence of explanations s.t., for all 0 ≤ i ≤ k, each ai is unhelpful
in 〈Ai, G〉. Let A′′ ⊆ A \A′, let a ∈ A′′. Then a is unhelpful in 〈A′ ∪A′′, G〉.

2. Let 〈A,G0 = G〉, 〈A,G1 = G0 \ {g0}〉, 〈A,G2 = G1 \ {g1}〉, . . . , 〈A,G′ = Gk\
{gk}〉 be a sequence of explanations s.t., for all 0 ≤ i ≤ k, each gi is unhelpful in
〈A,Gi〉. Let G′′ ⊆ G \G′, let g ∈ G′′. Then g is unhelpful in 〈A,G′ ∪G′′〉.

Proof:
1. Let G′ ⊆ G. First note that, as A′ is obtained by a sequence of removals of unhelp-

ful assumptions, 〈A,G′〉 is realizable iff 〈A′, G′〉 is realizable.
(a) 〈A,G′〉 is unrealizable. By monotonicity of unrealizability in the set of as-

sumptions, 〈A′ ∪A′′, G′〉 and 〈A′ ∪A′′ \ {a}, G′〉 are unrealizable, too.
(b) 〈A,G′〉 is realizable. So is 〈A′, G′〉. By monotonicity of realizability in the set

of assumptions, 〈A′ ∪A′′, G′〉 and 〈A′ ∪A′′ \ {a}, G′〉 are realizable, too.
2. Analogous.

Proposition 2.
1. Let 〈A,G〉 be a minimally unfulfillable specification. a ∈ A is unhelpful in A iff
〈A \ {a}, G〉 is minimally unfulfillable.

2. Let 〈A,G〉 be a minimally sufficient specification. g ∈ G is unhelpful in G iff
〈A,G \ {g}〉 is minimally sufficient.

Proof:
1. ⇒ a is not helpful in A. Hence, for all G′ ⊆ G, 〈A,G′〉 is realizable iff

〈A \ {a}, G′〉 is realizable. With that, 〈A,G〉 being minimally unfulfillable im-
plies 〈A \ {a}, G〉 being minimally unfulfillable.

⇐ Both 〈A,G〉 and 〈A \ {a}, G〉 are minimally unfulfillable. Hence, 〈A,G〉
and 〈A \ {a}, G〉 are unrealizable and for all G′ ⊂ G, both 〈A,G′〉 and
〈A \ {a}, G′〉 are realizable. That directly gives a being not helpful in A.

2. Analogous.

Proposition 3.
1. Let 〈A,G〉 be unrealizable. g ∈ G is unhelpful in G iff 〈A,G \ {g}〉 is unrealizable.
2. Let 〈A,G〉 be unrealizable. G is minimally unfulfillable iff all g ∈ G are helpful.
3. Let 〈A,G〉 be realizable. a ∈ A is unhelpful in A iff 〈A \ {a}, G〉 is realizable.
4. Let 〈A,G〉 be realizable. A is minimally sufficient iff all a ∈ A are helpful.

Proof:
1. ⇒ Let g ∈ G be unhelpful in G. Hence, as 〈A,G〉 is unrealizable, so is

〈A,G \ {g}〉.
⇐ Let 〈A,G \ {g}〉 be unrealizable. Hence, for all A′ ⊆ A, both 〈A′, G〉 and

〈A′, G \ {g}〉 are unrealizable. Hence, g is unhelpful in G.
2. Corollary of 1.
3. Analogous to 1.
4. Corollary of 3.
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B Additional Explanations on the Experiments

In this appendix we give some additional details about the specifications used in the
experiments and modifications we made to make the specification unrealizable. This
information is not required for understanding the paper and aims to help understanding
the experiments run and results obtained.

Here only the AMBA AHB Arbiter specifications are explained as the IBM GenBuf
Controller specifications are modified in a similar way.

B.1 AMBA AHB Arbiter Specifications

ARM’s Advanced Microcontroller Bus Architecture (AMBA) defines the Advanced
High-Performance Bus (AHB), an on-chip communication standard connecting such
devices as processor cores, cache memory, and DMA controllers. Here we give a very
brief description of the AMBA AHB specifications which we took from [BGJ+07]. See
[BGJ+07] for a more detailed explanation.

The system in these specifications is the bus controller which schedules the access
of masters, who wish to communicate with slaves, to the shared bus. The responsibility
of the controller is to decide which master is granted access to the bus at which time.
The environment in the given specification are the masters and slaves. The masters can
raise requests to access the bus to transfer some data. During requests a master specifies
which kind of access is required. An access granted by the bus controller to a master
can be interruptible or uninterruptible. The slaves have only one output signal indicating
whether the transferred data has been processed (and the bus can be used for another
transfer), or not. The specifications are parameterized by the number of masters. The
number of slaves is fixed to 1.

The assumptions of the specifications define the initial conditions of masters and
slaves, forbid masters to hold infinitely long an uninterruptible access, force the slaves
to eventually process data, etc. The guarantees to be fulfilled by the system (bus con-
troller) define how various kinds of access have to be processed, forbid granting the
access to more than one master at a time, make the controller eventually respond to
every master request, etc.

The specifications are generated by a script (see [BGJ+07] for details) which takes
one parameter (the number of masters) and outputs the corresponding specification. We
slightly modified the script to make the format of the specifications to be acceptable for
our tool. All the generated specifications are realizable.

B.2 Modification Introduced to the Specifications

The original specifications are realizable. For our experiments we needed also unreal-
izable specifications but we were not able to find real-life examples in the literature. As
a result we decided to modify the existing specifications to make them unrealizable.

In general, a GR(1) specification can be made unrealizable by adding constraints to
ϕS
I , ϕS

R, or φS
ψ , or by removing constraints from ϕE

I , ϕE
R, or ϕE

ψ . We simulated the cases
of adding a transition relation to ϕS

R, adding a liveness condition to ϕS
ψ , and removing
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a liveness condition from ϕE
ψ . The constraint added to the guarantee transition relation

forbids the bus controller to reach particular states which are always reached if the
environment behaves in a particular way (as result the environment can always force
the system to get into a deadlock). In the additional guarantee liveness condition we
specified states where master 0 has obtained the uninterruptible access but still has
not released it. If master 0 never makes a request for an uninterruptible access the bus
controller can never reach the specified states. As result the system cannot satisfy our
liveness condition without cooperation with the environment. For the last case one of the
fairness conditions was removed from the assumptions. The removed fairness condition
forbids a master to lock in an infinite uninterruptible access. Without this condition one
of the masters may obtain such an access and never release it thus making it impossible
for the controller to respond to requests of other masters.

B.3 Explanations Computed

After obtaining all the realizable and unrealizable specifications as described above the
explanations for them were computed.

For the original realizable specifications we found out that none of the assumption
initial conditions are required for realizability, i.e., the system can always satisfy all the
guarantees from any state 9. At the same time all the specifications (except AMBA-1)
need all the assumption transition relations and liveness conditions for realizability.

For the unrealizable specifications the number of constraints being removed from
both players is considerable. Moreover, for many specifications all the assumptions
were removed, i.e., with or without the environment being constrained the unrealizable
sets of guarantees remained the same. This may indicate that the problem is likely to be
within the system guarantees (which is indeed the case for our specifications). For the
remaining specifications the assumptions left in the explanations mostly consist of the
initial conditions.

B.4 A Bug in the Specifications

Fig. 1 shows that for the original, realizable specification AMBA-2 (i.e., there are
2 masters) 4 assumptions are required for realizability. The surprising result is that for
AMBA-3 (i.e., there are 3 masters) only 2 assumptions are required. This means that by
increasing the size of the specification (number of masters) some assumptions became
redundant. Such behavior is very suspicious. We investigated the problem and found out
that this is caused by a bug in the specifications. In particular, signal HMASTER which
has range 0 . . . N − 1 (N is the number of masters) identifies which master is currently
granted access to the bus (see [BGJ+07] for more details). For AMBA-2 HMASTER is
a one bit variable, i.e., possible values are 0 and 1, each of which is used. For AMBA-3
HMASTER has two bits to encode three possible values. The problem is that there is
a fourth value which is completely ignored in the specification but nevertheless can be

9 This is true for the specification fixed as described in section B.4. Without that fix not only
initial condition but even some of the assumption transition relations are not required for the
realizability.
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assigned to HMASTER 10 (the situation is similar for AMBA-1 and AMBA-5). To check
our guess we added a constraint that forbids this assignment. After that the explanation
obtained from AMBA-3 shows that 5 assumptions are required for realizability. This
result is consistent with the other AMBA-∗ specifications where all initial conditions
can be removed from assumptions but all transition relations and liveness conditions
are found to be essential for realizability (except for AMBA-1).

There are also other results in Fig 1 looking strange. For example, the explana-
tion for AMBA-2-W-GT is bigger than the explanation for AMBA-3-W-GT. The cause
of the problem is similar to the above one, i.e., a variable of two bits (stateA1 0 and
stateA1 1) encodes only three values in AMBA-2-W-GT and four values in AMBA-3-
W-GT. But here the situation is different because the fourth unused but possible value
in AMBA-2-W-GT can never be achieved with the transition relations and initial con-
ditions provided. As result AMBA-2-W-GT explanation requires additional constraints
(which make that the fourth value impossible), whereas AMBA-3-W-GT does not need
them.

Note that the bug and strangely looking behaviors were discovered because of the
information computed by the methods described in this paper. In particular, the as-
sumptions were detected which had to be necessary for the realizability but were not.
Our approach makes possible a more profound analysis of the dependencies between
assumptions and guarantees, which can be done by disabling some constraints of one
player and detecting which constraints of the other player make the specification real-
izable. Such analysis could give deeper comprehension of the specification and poten-
tially reveal some other problems (if there are any).

Note as well that our approach allowed us not only discover a bug but also helped
us to localize it by removing constraints not directly related to the problem and thereby
saving time on debugging.

10 Notice that the description of the specifications in [BGJ+07] correctly defines a three-valued
type for this signal and the problem was introduced only in the script generating the concrete
specifications.
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