
Extending Proof Tree Preserving Interpolation to
Sequences and Trees (Work in Progress)

Jürgen Christ Jochen Hoenicke

University of Freiburg

July 8, 2013

Christ, Hoenicke (Uni Freiburg) Tree Interpolation July 8, 2013 1 / 29



Alternative Title

Extending
Proof Tree Preserving Interpolation

to
Proof Tree Preserving Tree Interpolation

Christ, Hoenicke (Uni Freiburg) Tree Interpolation July 8, 2013 2 / 29



Outline

1 Motivation

2 Preliminaries
Interpolation in SAT
Interpolation in SMT

3 From Binary to Tree Interpolation

4 Tree Interpolation by Example

5 Conclusion

Christ, Hoenicke (Uni Freiburg) Tree Interpolation July 8, 2013 3 / 29



Uses of Tree Interpolation

res < n

res = 0

n ≤ 0

n = 0

>

>

n ≤ res

Hoare-style program
verification [Henzinger 04]

procedure f (n) returns res
if (n <= 0)

res := 0

else
res := n + call f (n − 1)

assert res >= n

Verification of multi-threaded
programs and higher order
programs [Rybalchenko 12]

Incremental update
checking [Sery 11]

Solving non-recursive Horn
clauses [Rybalchenko 11]

Inductive Dataflow
Graphs [Podelski 13]

. . .

Christ, Hoenicke (Uni Freiburg) Tree Interpolation July 8, 2013 4 / 29



Uses of Tree Interpolation

res < n

res = 0

n ≤ 0

n = 0

>

>

n ≤ res

Hoare-style program
verification [Henzinger 04]

procedure f (n) returns res
if (n <= 0)

res := 0

else
res := n + call f (n − 1)

assert res >= n

Verification of multi-threaded
programs and higher order
programs [Rybalchenko 12]

Incremental update
checking [Sery 11]

Solving non-recursive Horn
clauses [Rybalchenko 11]

Inductive Dataflow
Graphs [Podelski 13]

. . .

Christ, Hoenicke (Uni Freiburg) Tree Interpolation July 8, 2013 4 / 29



Uses of Tree Interpolation

res < n

res = n + resc

¬(n ≤ 0)

n = 1

>

>

resc = 0

nc ≤ 0

nc = n − 1

>

>

0 ≤ resc

n ≤ res

Hoare-style program
verification [Henzinger 04,
Heizmann 10]

procedure f (n) returns res
if (n <= 0)

res := 0
else

res := n + call f (n − 1)
assert res >= n

Verification of multi-threaded
programs and higher order
programs [Rybalchenko 12]

Incremental update
checking [Sery 11]

Solving non-recursive Horn
clauses [Rybalchenko 11]

Inductive Dataflow
Graphs [Podelski 13]

. . .

Christ, Hoenicke (Uni Freiburg) Tree Interpolation July 8, 2013 4 / 29



Uses of Tree Interpolation

res < n

res = n + resc

¬(n ≤ 0)

n = 1

>

>

resc = 0

nc ≤ 0

nc = n − 1

>

>

0 ≤ resc

n ≤ res

Hoare-style program
verification [Henzinger 04,
Heizmann 10]

procedure f (n) returns res
if (n <= 0)

res := 0
else

res := n + call f (n − 1)
assert res >= n

Verification of multi-threaded
programs and higher order
programs [Rybalchenko 12]

Incremental update
checking [Sery 11]

Solving non-recursive Horn
clauses [Rybalchenko 11]

Inductive Dataflow
Graphs [Podelski 13]

. . .

Christ, Hoenicke (Uni Freiburg) Tree Interpolation July 8, 2013 4 / 29



Uses of Tree Interpolation

Hoare-style program
verification [Henzinger 04,
Heizmann 10]

Verification of multi-threaded
programs and higher order
programs [Rybalchenko 12]

Incremental update
checking [Sery 11]

Solving non-recursive Horn
clauses [Rybalchenko 11]

Inductive Dataflow
Graphs [Podelski 13]

. . .

Christ, Hoenicke (Uni Freiburg) Tree Interpolation July 8, 2013 4 / 29



Tree Interpolation Problem

F0
I0

F1
I1

F2
I2

F3
I3

F4
I4

F5
I5

Christ, Hoenicke (Uni Freiburg) Tree Interpolation July 8, 2013 5 / 29



Tree Interpolation Problem

F0

I0

F1

I1

F2

I2

F3

I3

F4

I4

F5

I5

∧
Fi is unsatisfiable

Christ, Hoenicke (Uni Freiburg) Tree Interpolation July 8, 2013 5 / 29



Tree Interpolation Problem

F0
I0

F1
I1

F2
I2

F3
I3

F4
I4

F5
I5

∧
Fi is unsatisfiable

Christ, Hoenicke (Uni Freiburg) Tree Interpolation July 8, 2013 5 / 29



Tree Interpolation Problem

F0
I0

F1
I1

F2
I2

F3
I3

F4
I4

F5
I5

∧
Fi is unsatisfiable

Tree Inductivity:

I0 ≡ ⊥

Child interpolants
and parent imply
parent interpolant

Interpolant only
contains symbols
occurring inside and
outside the current
subtree

Christ, Hoenicke (Uni Freiburg) Tree Interpolation July 8, 2013 5 / 29



Tree Interpolation Problem

F0
I0

F1
I1

F2
I2

F3
I3

F4
I4

F5
I5

∧
Fi is unsatisfiable

Tree Inductivity:

I0 ≡ ⊥
Child interpolants
and parent imply
parent interpolant

Interpolant only
contains symbols
occurring inside and
outside the current
subtree

Christ, Hoenicke (Uni Freiburg) Tree Interpolation July 8, 2013 5 / 29



Tree Interpolation Problem

F0
I0

F1
I1

F2
I2

F3
I3

F4
I4

F5
I5

∧
Fi is unsatisfiable

Tree Inductivity:

I0 ≡ ⊥
Child interpolants
and parent imply
parent interpolant

Interpolant only
contains symbols
occurring inside and
outside the current
subtree

Christ, Hoenicke (Uni Freiburg) Tree Interpolation July 8, 2013 5 / 29



Outline

1 Motivation

2 Preliminaries
Interpolation in SAT
Interpolation in SMT

3 From Binary to Tree Interpolation

4 Tree Interpolation by Example

5 Conclusion

Christ, Hoenicke (Uni Freiburg) Tree Interpolation July 8, 2013 6 / 29



Binary Interpolation

For A ∧ B |=T ⊥:

A |=T I ,

B ∧ I |=T ⊥,

symb(I ) ⊆ symb(A) ∩ symb(B)

B

A

Christ, Hoenicke (Uni Freiburg) Tree Interpolation July 8, 2013 7 / 29



Binary Interpolation

For A ∧ B |=T ⊥:

A |=T I ,

B ∧ I |=T ⊥,

symb(I ) ⊆ symb(A) ∩ symb(B)

B

A

Christ, Hoenicke (Uni Freiburg) Tree Interpolation July 8, 2013 7 / 29



Outline

1 Motivation

2 Preliminaries
Interpolation in SAT
Interpolation in SMT

3 From Binary to Tree Interpolation

4 Tree Interpolation by Example

5 Conclusion

Christ, Hoenicke (Uni Freiburg) Tree Interpolation July 8, 2013 8 / 29



Resolution Refutation

Proof consists of

leaves representing input clauses,

inner nodes derived by resolution

C1 ∨ ` C2 ∨ ¬`
C1 ∨ C2

the root node representing the empty clause.

⊥

P

P ∨ Q P ∨ ¬Q

¬P

Christ, Hoenicke (Uni Freiburg) Tree Interpolation July 8, 2013 9 / 29



Resolution Refutation

Proof consists of

leaves representing input clauses,

inner nodes derived by resolution

C1 ∨ ` C2 ∨ ¬`
C1 ∨ C2

the root node representing the empty clause.

⊥

P

P ∨ Q P ∨ ¬Q

¬P

Christ, Hoenicke (Uni Freiburg) Tree Interpolation July 8, 2013 9 / 29



Resolution Refutation

Proof consists of

leaves representing input clauses,

inner nodes derived by resolution

C1 ∨ ` C2 ∨ ¬`
C1 ∨ C2

the root node representing the empty clause.

⊥

P

P ∨ Q P ∨ ¬Q

¬P

Christ, Hoenicke (Uni Freiburg) Tree Interpolation July 8, 2013 9 / 29



Labelled Resolution Refutation

Label each clause in the resolution refutation with partial interpolant

` ∈ A

C1 ∨ ` : I1
C2 ∨ ¬` : I2

C1 ∨ C2 : I1 ∨ I2

` ∈ B

C1 ∨ ` : I1
C2 ∨ ¬` : I2

C1 ∨ C2 : I1 ∧ I2

⊥ : I⊥

P : IP

P ∨ Q : IP∨Q P ∨ ¬Q : IP∨¬Q

¬P : I¬P

Syntactic rules for leaves

Interpolant of resolved based on interpolants of antecedents and pivot

I⊥ is desired interpolant.

Christ, Hoenicke (Uni Freiburg) Tree Interpolation July 8, 2013 10 / 29



Labelled Resolution Refutation

Label each clause in the resolution refutation with partial interpolant

` ∈ A

C1 ∨ ` : I1
C2 ∨ ¬` : I2

C1 ∨ C2 : I1 ∨ I2

` ∈ B

C1 ∨ ` : I1
C2 ∨ ¬` : I2

C1 ∨ C2 : I1 ∧ I2

⊥ : I⊥

P : IP

P ∨ Q : IP∨Q P ∨ ¬Q : IP∨¬Q

¬P : I¬P

Syntactic rules for leaves

Interpolant of resolved based on interpolants of antecedents and pivot

I⊥ is desired interpolant.

Christ, Hoenicke (Uni Freiburg) Tree Interpolation July 8, 2013 10 / 29



Labelled Resolution Refutation

Label each clause in the resolution refutation with partial interpolant

` ∈ A

C1 ∨ ` : I1
C2 ∨ ¬` : I2

C1 ∨ C2 : I1 ∨ I2

` ∈ B

C1 ∨ ` : I1
C2 ∨ ¬` : I2

C1 ∨ C2 : I1 ∧ I2 ⊥ : I⊥

P : IP

P ∨ Q : IP∨Q P ∨ ¬Q : IP∨¬Q

¬P : I¬P

Syntactic rules for leaves

Interpolant of resolved based on interpolants of antecedents and pivot

I⊥ is desired interpolant.

Christ, Hoenicke (Uni Freiburg) Tree Interpolation July 8, 2013 10 / 29



Labelled Resolution Refutation

Label each clause in the resolution refutation with partial interpolant

` ∈ A

C1 ∨ ` : I1
C2 ∨ ¬` : I2

C1 ∨ C2 : I1 ∨ I2

` ∈ B

C1 ∨ ` : I1
C2 ∨ ¬` : I2

C1 ∨ C2 : I1 ∧ I2 ⊥ : I⊥

P : IP

P ∨ Q : IP∨Q P ∨ ¬Q : IP∨¬Q

¬P : I¬P

Syntactic rules for leaves

Interpolant of resolved based on interpolants of antecedents and pivot

I⊥ is desired interpolant.

Christ, Hoenicke (Uni Freiburg) Tree Interpolation July 8, 2013 10 / 29



Partial Interpolants

Partial interpolant IC of clause C is interpolant of

A ∧ B ∧ ¬C

Christ, Hoenicke (Uni Freiburg) Tree Interpolation July 8, 2013 11 / 29



Partial Interpolants

Partial interpolant IC of clause C is interpolant of

A ∧ B ∧ ¬C

How to split ¬C?

Christ, Hoenicke (Uni Freiburg) Tree Interpolation July 8, 2013 11 / 29



Partial Interpolants

Partial interpolant IC of clause C is interpolant of

A ∧ B ∧ ¬C

Define ¬C � A and ¬C � B such that

symb(¬C � A) ⊆ symb(A)

symb(¬C � B) ⊆ symb(B)

¬C ↔ ¬C � A ∧ ¬C � B

Partial interpolant IC is interpolant of
A ∧ ((¬C ) � A) and B ∧ ((¬C ) � B).

Christ, Hoenicke (Uni Freiburg) Tree Interpolation July 8, 2013 11 / 29



Partial Interpolants

Partial interpolant IC of clause C is interpolant of

A ∧ B ∧ ¬C

Define ¬C � A and ¬C � B such that

symb(¬C � A) ⊆ symb(A)

symb(¬C � B) ⊆ symb(B)

¬C ↔ ¬C � A ∧ ¬C � B

Partial interpolant IC is interpolant of
A ∧ ((¬C ) � A) and B ∧ ((¬C ) � B).

Christ, Hoenicke (Uni Freiburg) Tree Interpolation July 8, 2013 11 / 29



Outline

1 Motivation

2 Preliminaries
Interpolation in SAT
Interpolation in SMT

3 From Binary to Tree Interpolation

4 Tree Interpolation by Example

5 Conclusion

Christ, Hoenicke (Uni Freiburg) Tree Interpolation July 8, 2013 12 / 29



Additional Leaves

Theory lemmas

Theory combination lemmas

x ≤ y ∨ x 6= y

x ≥ y ∨ x 6= y

x < y ∨ x > y ∨ x = y

might contain literals that are not in the input formulas

Christ, Hoenicke (Uni Freiburg) Tree Interpolation July 8, 2013 13 / 29



Additional Leaves

Theory lemmas

Theory combination lemmas

x ≤ y ∨ x 6= y

x ≥ y ∨ x 6= y

x < y ∨ x > y ∨ x = y

might contain literals that are not in the input formulas

Christ, Hoenicke (Uni Freiburg) Tree Interpolation July 8, 2013 13 / 29



Mixed Literals

literals that contain symbols only in A and symbols only in B: a = b

literals do not occur in input formulas

created by

theory combination (Nelson-Oppen, Ackermannization),
cuts and extended branches used to solve integer arithmetic,
. . .

What is a = b � A and a = b � B?

Christ, Hoenicke (Uni Freiburg) Tree Interpolation July 8, 2013 14 / 29



Mixed Literals

literals that contain symbols only in A and symbols only in B: a = b

literals do not occur in input formulas

created by

theory combination (Nelson-Oppen, Ackermannization),
cuts and extended branches used to solve integer arithmetic,
. . .

What is a = b � A and a = b � B?

Christ, Hoenicke (Uni Freiburg) Tree Interpolation July 8, 2013 14 / 29



Mixed Literals

literals that contain symbols only in A and symbols only in B: a = b

literals do not occur in input formulas

created by

theory combination (Nelson-Oppen, Ackermannization),
cuts and extended branches used to solve integer arithmetic,
. . .

What is a = b � A and a = b � B?

Christ, Hoenicke (Uni Freiburg) Tree Interpolation July 8, 2013 14 / 29



Mixed Literals

literals that contain symbols only in A and symbols only in B: a = b

literals do not occur in input formulas

created by

theory combination (Nelson-Oppen, Ackermannization),
cuts and extended branches used to solve integer arithmetic,
. . .

What is a = b � A and a = b � B?

Christ, Hoenicke (Uni Freiburg) Tree Interpolation July 8, 2013 14 / 29



Interpolation and Mixed Literals

Purification:
replace a ≤ b by a ≤ x ∧ x ≤ b
similar to purification in Nelson-Oppen

Interpolation:
Remove purification variable on resolution:
C1 ∨ a ≤ b : I1(x1) C2 ∨ ¬(a ≤ b) : I2(x2)

C1 ∨ C2 : I3

Christ, Hoenicke (Uni Freiburg) Tree Interpolation July 8, 2013 15 / 29



Interpolation and Mixed Literals

Purification:
replace a ≤ b by a ≤ x ∧ x ≤ b
similar to purification in Nelson-Oppen

Interpolation:
Remove purification variable on resolution:
C1 ∨ a ≤ b : I1(x1) C2 ∨ ¬(a ≤ b) : I2(x2)

C1 ∨ C2 : I3

Christ, Hoenicke (Uni Freiburg) Tree Interpolation July 8, 2013 15 / 29



Interpolation and Mixed Literals

Purification:
replace a ≤ b by a ≤ x ∧ x ≤ b
similar to purification in Nelson-Oppen

Interpolation:
Remove purification variable on resolution:
C1 ∨ a ≤ b : I1(x1) C2 ∨ ¬(a ≤ b) : I2(x2)

C1 ∨ C2 : I3

Rules for uninterpreted functions and linear arithmetic [TACAS 2013]

Christ, Hoenicke (Uni Freiburg) Tree Interpolation July 8, 2013 15 / 29



Outline

1 Motivation

2 Preliminaries
Interpolation in SAT
Interpolation in SMT

3 From Binary to Tree Interpolation

4 Tree Interpolation by Example

5 Conclusion

Christ, Hoenicke (Uni Freiburg) Tree Interpolation July 8, 2013 16 / 29



Idea

Binary Interpolation:

⊥ : I⊥

C1 : I1

C3 : I3 C4 : I4

C2 : I2 I2I1

I1 ∨ I2

⊥

I2(v1)

I2(v3)I2(v2)

⊥

I1(v1)

I1(v3)I1(v2)

⊥

I1(v1) ∨ I2(v1)

I1(v3) ∧ I2(v3)I1(v2) ∨ I2(v2)

repeated
binary
interpolation

Christ, Hoenicke (Uni Freiburg) Tree Interpolation July 8, 2013 17 / 29



Idea

Binary Interpolation:

⊥ : I⊥

C1 : I1

C3 : I3 C4 : I4

C2 : I2 I2I1

I1 ∨ I2

⊥

I2(v1)

I2(v3)I2(v2)

⊥

I1(v1)

I1(v3)I1(v2)

⊥

I1(v1) ∨ I2(v1)

I1(v3) ∧ I2(v3)I1(v2) ∨ I2(v2)

repeated
binary
interpolation

Christ, Hoenicke (Uni Freiburg) Tree Interpolation July 8, 2013 17 / 29



Idea

Tree Interpolation:

⊥ : I⊥

C1 : I1

C3 : I3 C4 : I4

C2 : I2 I2I1

I1 ∨ I2

⊥

I2(v1)

I2(v3)I2(v2)

⊥

I1(v1)

I1(v3)I1(v2)

⊥

I1(v1) ∨ I2(v1)

I1(v3) ∧ I2(v3)I1(v2) ∨ I2(v2)

repeated
binary
interpolation

Christ, Hoenicke (Uni Freiburg) Tree Interpolation July 8, 2013 17 / 29



Idea

Tree Interpolation:

⊥ : I⊥

C1 : I1

C3 : I3 C4 : I4

C2 : I2 I2I1

I1 ∨ I2

⊥

I2(v1)

I2(v3)I2(v2)

⊥

I1(v1)

I1(v3)I1(v2)

⊥

I1(v1) ∨ I2(v1)

I1(v3) ∧ I2(v3)I1(v2) ∨ I2(v2)

repeated
binary
interpolation

Christ, Hoenicke (Uni Freiburg) Tree Interpolation July 8, 2013 17 / 29



Idea

Tree Interpolation:

⊥ : I⊥

C1 : I1

C3 : I3 C4 : I4

C2 : I2 I2I1

I1 ∨ I2

⊥

I2(v1)

I2(v3)I2(v2)

⊥

I1(v1)

I1(v3)I1(v2)

⊥

I1(v1) ∨ I2(v1)

I1(v3) ∧ I2(v3)I1(v2) ∨ I2(v2)

repeated
binary
interpolation

Christ, Hoenicke (Uni Freiburg) Tree Interpolation July 8, 2013 17 / 29



Partial Tree Interpolants

Partial tree interpolant IC for clause C is tree interpolant of

F0

F1

F3F2

∧ ¬C

How to split ¬C?

Christ, Hoenicke (Uni Freiburg) Tree Interpolation July 8, 2013 18 / 29



Partial Tree Interpolants

Partial tree interpolant IC for clause C is tree interpolant of

F0 ∧ ((¬C ) � v0)

F1 ∧ ((¬C ) � v1)

F3 ∧ ((¬C ) � v3)F2 ∧ ((¬C ) � v2)

∧ ¬C

One purification function per node

`↔ ∃x .
∧

v ` � v

Christ, Hoenicke (Uni Freiburg) Tree Interpolation July 8, 2013 18 / 29



Projection of Mixed Literals

one auxiliary variable for every node in which literal is mixed

projection of a = b:

>

∅

x2 = x3

∅

x3 = x4

∅

x4 = b

{b}

x1 = x2

∅

>

∅

a = x1

{a}

>

∅

Christ, Hoenicke (Uni Freiburg) Tree Interpolation July 8, 2013 19 / 29



Projection of Mixed Literals

one auxiliary variable for every node in which literal is mixed

projection of a = b:

>
∅

x2 = x3

∅

x3 = x4

∅

x4 = b

{b}

x1 = x2

∅

>
∅

a = x1

{a}

>
∅

Christ, Hoenicke (Uni Freiburg) Tree Interpolation July 8, 2013 19 / 29



Projection of Mixed Literals

one auxiliary variable for every node in which literal is mixed

projection of a = b:

>
∅

x2 = x3

∅

x3 = x4

∅

x4 = b

{b}

x1 = x2

∅

>
∅

a = x1

{a}

>
∅

Christ, Hoenicke (Uni Freiburg) Tree Interpolation July 8, 2013 19 / 29



Projection of Mixed Literals

one auxiliary variable for every node in which literal is mixed

projection of a = b:

>
∅

x2 = x3
∅

x3 = x4
∅

x4 = b
{b}

x1 = x2
∅

>
∅

a = x1
{a}

>
∅

Christ, Hoenicke (Uni Freiburg) Tree Interpolation July 8, 2013 19 / 29



Outline

1 Motivation

2 Preliminaries
Interpolation in SAT
Interpolation in SMT

3 From Binary to Tree Interpolation

4 Tree Interpolation by Example

5 Conclusion

Christ, Hoenicke (Uni Freiburg) Tree Interpolation July 8, 2013 20 / 29



Interpolation Problem and Proof Excerpt

{q, r}
q 6= r

{c , d}
c = d

{a, c , q, f (·)}
a = c ∧ q = f (a)

{b, d , r , f (·)}
d = b ∧ f (b) = r

a = b ∨ a 6= c ∨ c 6= d ∨ d 6= b a 6= b ∨ q 6= f (a) ∨ f (b) 6= r ∨ q = r

a 6= c ∨ c 6= d ∨ d 6= b ∨ q 6= f (a) ∨ f (b) 6= r ∨ q = r

Christ, Hoenicke (Uni Freiburg) Tree Interpolation July 8, 2013 21 / 29



Interpolation Problem and Proof Excerpt

{q, r}
q 6= r

{c , d}
c = d

{a, c , q, f (·)}
a = c ∧ q = f (a)

{b, d , r , f (·)}
d = b ∧ f (b) = r

a = b ∨ a 6= c ∨ c 6= d ∨ d 6= b a 6= b ∨ q 6= f (a) ∨ f (b) 6= r ∨ q = r

a 6= c ∨ c 6= d ∨ d 6= b ∨ q 6= f (a) ∨ f (b) 6= r ∨ q = r

Christ, Hoenicke (Uni Freiburg) Tree Interpolation July 8, 2013 21 / 29



Projection: a = b ∧ q = f (a) ∧ q 6= r ∧ f (b) = r

{q, r}

q 6= r ∧ x2 = x3

{c , d}

x1 = x2

{a, c , q, f (·)}

q = f (a) ∧ a = x1

{b, d , r , f (·)}

f (b) = r ∧ x3 = b

Christ, Hoenicke (Uni Freiburg) Tree Interpolation July 8, 2013 22 / 29



Projection: a = b ∧ q = f (a) ∧ q 6= r ∧ f (b) = r

{q, r}
q 6= r

∧ x2 = x3

{c , d}

x1 = x2

{a, c , q, f (·)}
q = f (a)

∧ a = x1

{b, d , r , f (·)}
f (b) = r

∧ x3 = b

Christ, Hoenicke (Uni Freiburg) Tree Interpolation July 8, 2013 22 / 29



Projection: a = b ∧ q = f (a) ∧ q 6= r ∧ f (b) = r

{q, r}
q 6= r ∧ x2 = x3

{c , d}
x1 = x2

{a, c , q, f (·)}
q = f (a) ∧ a = x1

{b, d , r , f (·)}
f (b) = r ∧ x3 = b

Christ, Hoenicke (Uni Freiburg) Tree Interpolation July 8, 2013 22 / 29



Interpolation: a = b ∧ q = f (a) ∧ f (b) = r ∧ q 6= r

q 6= r ∧ x2 = x3

x1 = x2

q = f (a) ∧ a = x1

f (b) = r ∧ x3 = b

q f (a)

a x1 x2 x3 b

f (b) r

/

⊥

q = f (x2)

q = f (x1)

f (x3) = r

Christ, Hoenicke (Uni Freiburg) Tree Interpolation July 8, 2013 23 / 29



Interpolation: a = b ∧ q = f (a) ∧ f (b) = r ∧ q 6= r

q 6= r ∧ x2 = x3

x1 = x2

q = f (a) ∧ a = x1

f (b) = r ∧ x3 = b

q f (a)

a x1 x2 x3 b

f (b) r

/

⊥

q = f (x2)

q = f (x1)

f (x3) = r

Christ, Hoenicke (Uni Freiburg) Tree Interpolation July 8, 2013 23 / 29



Interpolation: a = b ∧ q = f (a) ∧ f (b) = r ∧ q 6= r

q 6= r ∧ x2 = x3

x1 = x2

q = f (a) ∧ a = x1

f (b) = r ∧ x3 = b

q f (a)

a x1 x2 x3 b

f (b) r

/

⊥

q = f (x2)

q = f (x1)

f (x3) = r

Christ, Hoenicke (Uni Freiburg) Tree Interpolation July 8, 2013 23 / 29



Interpolation: a = b ∧ q = f (a) ∧ f (b) = r ∧ q 6= r

q 6= r ∧ x2 = x3

x1 = x2

q = f (a) ∧ a = x1

f (b) = r ∧ x3 = b

q f (a)

a x1 x2 x3 b

f (b) r

/

⊥

q = f (x2)

q = f (x1)

f (x3) = r

Christ, Hoenicke (Uni Freiburg) Tree Interpolation July 8, 2013 23 / 29



Projection: a = c ∧ c = d ∧ d = b ∧ a 6= b

{q, r}

X2 ∩ X3 = ∅

{c , d}

c = d ∧ X1 ⊆ X2

{a, c , q, f (·)}

a = c ∧ a ∈ X1

{b, d , r , f (·)}

d = b ∧ b ∈ X3

X1,X2,X3 set-valued

Xi separates a and b

No reasoning about sets required in the solver

Christ, Hoenicke (Uni Freiburg) Tree Interpolation July 8, 2013 24 / 29



Projection: a = c ∧ c = d ∧ d = b ∧ a 6= b

{q, r}

X2 ∩ X3 = ∅

{c , d}
c = d

∧ X1 ⊆ X2

{a, c , q, f (·)}
a = c

∧ a ∈ X1

{b, d , r , f (·)}
d = b

∧ b ∈ X3

X1,X2,X3 set-valued

Xi separates a and b

No reasoning about sets required in the solver

Christ, Hoenicke (Uni Freiburg) Tree Interpolation July 8, 2013 24 / 29



Projection: a = c ∧ c = d ∧ d = b ∧ a 6= b

{q, r}
X2 ∩ X3 = ∅

{c , d}
c = d ∧ X1 ⊆ X2

{a, c , q, f (·)}
a = c ∧ a ∈ X1

{b, d , r , f (·)}
d = b ∧ b ∈ X3

X1,X2,X3 set-valued

Xi separates a and b

No reasoning about sets required in the solver

Christ, Hoenicke (Uni Freiburg) Tree Interpolation July 8, 2013 24 / 29



Interpolation: a = c ∧ c = d ∧ d = b ∧ a 6= b

X2 ∩ X3 = ∅

c = d ∧ X1 ⊆ X2

a = c ∧ a ∈ X1

d = b ∧ b ∈ X3

a

X1 X2 X3

c d b

/

⊥

d ∈ X2

c ∈ X1

d ∈ X3

Christ, Hoenicke (Uni Freiburg) Tree Interpolation July 8, 2013 25 / 29



Interpolation: a = c ∧ c = d ∧ d = b ∧ a 6= b

X2 ∩ X3 = ∅

c = d ∧ X1 ⊆ X2

a = c ∧ a ∈ X1

d = b ∧ b ∈ X3

a

X1 X2 X3

c d b

/

⊥

d ∈ X2

c ∈ X1

d ∈ X3

Christ, Hoenicke (Uni Freiburg) Tree Interpolation July 8, 2013 25 / 29



Interpolation: a = c ∧ c = d ∧ d = b ∧ a 6= b

X2 ∩ X3 = ∅

c = d ∧ X1 ⊆ X2

a = c ∧ a ∈ X1

d = b ∧ b ∈ X3

a

X1 X2 X3

c d b

/

⊥

d ∈ X2

c ∈ X1

d ∈ X3

Christ, Hoenicke (Uni Freiburg) Tree Interpolation July 8, 2013 25 / 29



Interpolation: a = c ∧ c = d ∧ d = b ∧ a 6= b

X2 ∩ X3 = ∅

c = d ∧ X1 ⊆ X2

a = c ∧ a ∈ X1

d = b ∧ b ∈ X3

a

X1 X2 X3

c d b

/

⊥

d ∈ X2

c ∈ X1

d ∈ X3

Christ, Hoenicke (Uni Freiburg) Tree Interpolation July 8, 2013 25 / 29



Magic Rule for Resolution on Mixed Equalities

partial interpolant for C1 ∨ a = b has form I1[s ∈ X ]
“If s ∈ X holds, then s = a resp. s = b (whichever is in the subtree)”

partial interpolant for C2 ∨ a 6= b has form I2(x)
“I2(x) holds for a resp. b (whichever is in the subtree)”

partial interpolant for the resolvent C1 ∨ C2

I1[I2(s)]

Christ, Hoenicke (Uni Freiburg) Tree Interpolation July 8, 2013 26 / 29



Magic Rule for Resolution on Mixed Equalities

partial interpolant for C1 ∨ a = b has form I1[s ∈ X ]
“If s ∈ X holds, then s = a resp. s = b (whichever is in the subtree)”

partial interpolant for C2 ∨ a 6= b has form I2(x)
“I2(x) holds for a resp. b (whichever is in the subtree)”

partial interpolant for the resolvent C1 ∨ C2

I1[I2(s)]

Christ, Hoenicke (Uni Freiburg) Tree Interpolation July 8, 2013 26 / 29



Interpolating the Resolution Step

C1 ∨ a = b :

⊥

d ∈ X2

c ∈ X1

d ∈ X3 C2 ∨ a 6= b :

⊥

q = f (x2)

q = f (x1)

f (x3) = r

C1 ∨ C2 :

⊥

q = f (d)

q = f (c)

f (d) = r

Christ, Hoenicke (Uni Freiburg) Tree Interpolation July 8, 2013 27 / 29



Interpolating the Resolution Step

C1 ∨ a = b :

⊥

d ∈ X2

c ∈ X1

d ∈ X3 C2 ∨ a 6= b :

⊥

q = f (x2)

q = f (x1)

f (x3) = r

C1 ∨ C2 :

⊥

q = f (d)

q = f (c)

f (d) = r

Christ, Hoenicke (Uni Freiburg) Tree Interpolation July 8, 2013 27 / 29



Outline

1 Motivation

2 Preliminaries
Interpolation in SAT
Interpolation in SMT

3 From Binary to Tree Interpolation

4 Tree Interpolation by Example

5 Conclusion

Christ, Hoenicke (Uni Freiburg) Tree Interpolation July 8, 2013 28 / 29



Conclusion

We extended our interpolation scheme to sequence and tree
interpolation.

Tree interpolation is repeated binary interpolation.

Scheme computes quantifier-free interpolants in the combination of
UF and LA, in particular in QF UFLIA.

No need to manipulate resolution proof.

Independent of the solver or proof search.

Correctness proofs still work in progress.

Scheme is implemented in SMTInterpol.

http://ultimate.informatik.uni-freiburg.de/smtinterpol

Thanks for your attention

Christ, Hoenicke (Uni Freiburg) Tree Interpolation July 8, 2013 29 / 29

http://ultimate.informatik.uni-freiburg.de/smtinterpol


Conclusion

We extended our interpolation scheme to sequence and tree
interpolation.

Tree interpolation is repeated binary interpolation.

Scheme computes quantifier-free interpolants in the combination of
UF and LA, in particular in QF UFLIA.

No need to manipulate resolution proof.

Independent of the solver or proof search.

Correctness proofs still work in progress.

Scheme is implemented in SMTInterpol.

http://ultimate.informatik.uni-freiburg.de/smtinterpol

Thanks for your attention

Christ, Hoenicke (Uni Freiburg) Tree Interpolation July 8, 2013 29 / 29

http://ultimate.informatik.uni-freiburg.de/smtinterpol

	Motivation
	Preliminaries
	Interpolation in SAT
	Interpolation in SMT

	From Binary to Tree Interpolation
	Tree Interpolation by Example
	Conclusion

