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Uses of Tree Interpolation

res < n

res = 0

n ≤ 0

n = 0

>

>

n ≤ res

Hoare-style program
verification [Henzinger 04]

procedure f (n) returns res
if (n <= 0)

res := 0

else
res := n + call f (n − 1)

assert res >= n

Verification of multi-threaded
programs and higher order
programs [Rybalchenko 12]

Incremental update
checking [Sery 11]

Solving non-recursive Horn
clauses [Rybalchenko 11]

Inductive Dataflow
Graphs [Podelski 13]

. . .
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Binary Interpolation

For A ∧ B |=T ⊥:

A |=T I ,

B ∧ I |=T ⊥,

symb(I ) ⊆ symb(A) ∩ symb(B)

B

A
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Resolution Refutation

Proof consists of

leaves representing input clauses,

inner nodes derived by resolution

C1 ∨ ` C2 ∨ ¬`
C1 ∨ C2

the root node representing the empty clause.

⊥

P

P ∨ Q P ∨ ¬Q

¬P
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Labelled Resolution Refutation

Label each clause in the resolution refutation with partial interpolant

` ∈ A

C1 ∨ ` : I1
C2 ∨ ¬` : I2

C1 ∨ C2 : I1 ∨ I2

` ∈ B

C1 ∨ ` : I1
C2 ∨ ¬` : I2

C1 ∨ C2 : I1 ∧ I2

⊥ : I⊥

P : IP

P ∨ Q : IP∨Q P ∨ ¬Q : IP∨¬Q

¬P : I¬P

Syntactic rules for leaves

Interpolant of resolved based on interpolants of antecedents and pivot

I⊥ is desired interpolant.
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Partial Interpolants

Partial interpolant IC of clause C is interpolant of

A ∧ B ∧ ¬C
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Partial Interpolants

Partial interpolant IC of clause C is interpolant of

A ∧ B ∧ ¬C

Define ¬C � A and ¬C � B such that

symb(¬C � A) ⊆ symb(A)

symb(¬C � B) ⊆ symb(B)

¬C ↔ ¬C � A ∧ ¬C � B

Partial interpolant IC is interpolant of
A ∧ ((¬C ) � A) and B ∧ ((¬C ) � B).
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Additional Leaves

Theory lemmas

Theory combination lemmas

x ≤ y ∨ x 6= y

x ≥ y ∨ x 6= y

x < y ∨ x > y ∨ x = y

might contain literals that are not in the input formulas
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Mixed Literals

literals that contain symbols only in A and symbols only in B: a = b

literals do not occur in input formulas

created by

theory combination (Nelson-Oppen, Ackermannization),
cuts and extended branches used to solve integer arithmetic,
. . .

What is a = b � A and a = b � B?
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Interpolation and Mixed Literals

Purification:
replace a ≤ b by a ≤ x ∧ x ≤ b
similar to purification in Nelson-Oppen

Interpolation:
Remove purification variable on resolution:
C1 ∨ a ≤ b : I1(x1) C2 ∨ ¬(a ≤ b) : I2(x2)

C1 ∨ C2 : I3
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Remove purification variable on resolution:
C1 ∨ a ≤ b : I1(x1) C2 ∨ ¬(a ≤ b) : I2(x2)

C1 ∨ C2 : I3

Rules for uninterpreted functions and linear arithmetic [TACAS 2013]
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Idea

Binary Interpolation:

⊥ : I⊥

C1 : I1

C3 : I3 C4 : I4

C2 : I2 I2I1

I1 ∨ I2

⊥

I2(v1)

I2(v3)I2(v2)

⊥

I1(v1)

I1(v3)I1(v2)

⊥

I1(v1) ∨ I2(v1)

I1(v3) ∧ I2(v3)I1(v2) ∨ I2(v2)

repeated
binary
interpolation
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Partial Tree Interpolants

Partial tree interpolant IC for clause C is tree interpolant of

F0

F1

F3F2

∧ ¬C

How to split ¬C?
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Partial Tree Interpolants

Partial tree interpolant IC for clause C is tree interpolant of

F0 ∧ ((¬C ) � v0)

F1 ∧ ((¬C ) � v1)

F3 ∧ ((¬C ) � v3)F2 ∧ ((¬C ) � v2)

∧ ¬C

One purification function per node

`↔ ∃x .
∧

v ` � v
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Projection of Mixed Literals

one auxiliary variable for every node in which literal is mixed

projection of a = b:

>

∅

x2 = x3

∅

x3 = x4

∅

x4 = b

{b}

x1 = x2

∅

>

∅

a = x1

{a}

>

∅
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Interpolation Problem and Proof Excerpt

{q, r}
q 6= r

{c , d}
c = d

{a, c , q, f (·)}
a = c ∧ q = f (a)

{b, d , r , f (·)}
d = b ∧ f (b) = r

a = b ∨ a 6= c ∨ c 6= d ∨ d 6= b a 6= b ∨ q 6= f (a) ∨ f (b) 6= r ∨ q = r

a 6= c ∨ c 6= d ∨ d 6= b ∨ q 6= f (a) ∨ f (b) 6= r ∨ q = r
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Projection: a = b ∧ q = f (a) ∧ q 6= r ∧ f (b) = r

{q, r}

q 6= r ∧ x2 = x3

{c , d}

x1 = x2

{a, c , q, f (·)}

q = f (a) ∧ a = x1

{b, d , r , f (·)}

f (b) = r ∧ x3 = b
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Projection: a = b ∧ q = f (a) ∧ q 6= r ∧ f (b) = r

{q, r}
q 6= r

∧ x2 = x3

{c , d}

x1 = x2

{a, c , q, f (·)}
q = f (a)

∧ a = x1

{b, d , r , f (·)}
f (b) = r

∧ x3 = b
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Projection: a = b ∧ q = f (a) ∧ q 6= r ∧ f (b) = r

{q, r}
q 6= r ∧ x2 = x3

{c , d}
x1 = x2

{a, c , q, f (·)}
q = f (a) ∧ a = x1

{b, d , r , f (·)}
f (b) = r ∧ x3 = b
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Interpolation: a = b ∧ q = f (a) ∧ f (b) = r ∧ q 6= r

q 6= r ∧ x2 = x3

x1 = x2

q = f (a) ∧ a = x1

f (b) = r ∧ x3 = b

q f (a)

a x1 x2 x3 b

f (b) r

/

⊥

q = f (x2)

q = f (x1)

f (x3) = r
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Interpolation: a = b ∧ q = f (a) ∧ f (b) = r ∧ q 6= r

q 6= r ∧ x2 = x3

x1 = x2

q = f (a) ∧ a = x1

f (b) = r ∧ x3 = b

q f (a)

a x1 x2 x3 b

f (b) r

/

⊥

q = f (x2)

q = f (x1)

f (x3) = r
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Interpolation: a = b ∧ q = f (a) ∧ f (b) = r ∧ q 6= r
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Projection: a = c ∧ c = d ∧ d = b ∧ a 6= b

{q, r}

X2 ∩ X3 = ∅

{c , d}

c = d ∧ X1 ⊆ X2

{a, c , q, f (·)}

a = c ∧ a ∈ X1

{b, d , r , f (·)}

d = b ∧ b ∈ X3

X1,X2,X3 set-valued

Xi separates a and b

No reasoning about sets required in the solver
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Interpolation: a = c ∧ c = d ∧ d = b ∧ a 6= b

X2 ∩ X3 = ∅

c = d ∧ X1 ⊆ X2

a = c ∧ a ∈ X1

d = b ∧ b ∈ X3

a

X1 X2 X3

c d b

/

⊥

d ∈ X2

c ∈ X1

d ∈ X3
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Magic Rule for Resolution on Mixed Equalities

partial interpolant for C1 ∨ a = b has form I1[s ∈ X ]
“If s ∈ X holds, then s = a resp. s = b (whichever is in the subtree)”

partial interpolant for C2 ∨ a 6= b has form I2(x)
“I2(x) holds for a resp. b (whichever is in the subtree)”

partial interpolant for the resolvent C1 ∨ C2

I1[I2(s)]
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Interpolating the Resolution Step

C1 ∨ a = b :

⊥

d ∈ X2

c ∈ X1

d ∈ X3 C2 ∨ a 6= b :

⊥

q = f (x2)

q = f (x1)

f (x3) = r

C1 ∨ C2 :

⊥

q = f (d)

q = f (c)

f (d) = r
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Conclusion

We extended our interpolation scheme to sequence and tree
interpolation.

Tree interpolation is repeated binary interpolation.

Scheme computes quantifier-free interpolants in the combination of
UF and LA, in particular in QF UFLIA.

No need to manipulate resolution proof.

Independent of the solver or proof search.

Correctness proofs still work in progress.

Scheme is implemented in SMTInterpol.

http://ultimate.informatik.uni-freiburg.de/smtinterpol

Thanks for your attention
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