# Extending Proof Tree Preserving Interpolation to Sequences and Trees (Work in Progress)

Jürgen Christ Jochen Hoenicke

University of Freiburg

July 8, 2013

Christ, Hoenicke (Uni Freiburg)



# Extending Proof Tree Preserving Interpolation to Proof Tree Preserving Tree Interpolation

Christ, Hoenicke (Uni Freiburg)

## Outline



### Motivation

#### 2 Preliminaries

- Interpolation in SAT
- Interpolation in SMT
- 3 From Binary to Tree Interpolation
- Tree Interpolation by Example

#### 5 Conclusion





 Hoare-style program verification [Henzinger 04]

> procedure f(n) returns res if  $(n \le 0)$ res := 0

assert res >= n





 Hoare-style program verification [Henzinger 04]

> procedure f(n) returns res if  $(n \le 0)$ res := 0

assert res >= n



• Hoare-style program verification [Henzinger 04, Heizmann 10]

> procedure f(n) returns res if  $(n \le 0)$ res := 0 else res := n + call f(n-1)assert res >= n



• Hoare-style program verification [Henzinger 04, Heizmann 10]

> procedure f(n) returns res if  $(n \le 0)$ res := 0 else res := n + call f(n-1)assert res >= n

- Hoare-style program verification [Henzinger 04, Heizmann 10]
- Verification of multi-threaded programs and higher order programs [Rybalchenko 12]
- Incremental update checking [Sery 11]
- Solving non-recursive Horn clauses [Rybalchenko 11]
- Inductive Dataflow Graphs [Podelski 13]
- . . .









#### $\bigwedge F_i$ is unsatisfiable



UNI FREIBURG

 $\bigwedge F_i$  is unsatisfiable





#### $\bigwedge F_i$ is unsatisfiable Tree Inductivity:

•  $I_0 \equiv \bot$ 





 $\bigwedge F_i$  is unsatisfiable Tree Inductivity:

- $I_0 \equiv \bot$
- Child interpolants and parent imply parent interpolant



 $\bigwedge F_i$  is unsatisfiable Tree Inductivity:

- $I_0 \equiv \bot$
- Child interpolants and parent imply parent interpolant
- Interpolant only contains symbols occurring inside and outside the current subtree

## Outline



### Motivation

### 2 Preliminaries

- Interpolation in SAT
- Interpolation in SMT
- 3 From Binary to Tree Interpolation
- Tree Interpolation by Example

### 5 Conclusion



### For $A \land B \models_{\mathcal{T}} \bot$ :

- $A \models_{\mathcal{T}} I$ ,
- $B \land I \models_{\mathcal{T}} \bot$ ,
- $symb(I) \subseteq symb(A) \cap symb(B)$



### For $A \land B \models_{\mathcal{T}} \bot$ :

- $A \models_{\mathcal{T}} I$ ,
- $B \land I \models_{\mathcal{T}} \bot$ ,
- $symb(I) \subseteq symb(A) \cap symb(B)$



## Outline



### Motivation

### 2 Preliminaries

#### Interpolation in SAT

Interpolation in SMT

### From Binary to Tree Interpolation

Tree Interpolation by Example

### 5 Conclusion

## **Resolution Refutation**

Proof consists of

• leaves representing input clauses,



## **Resolution Refutation**

Proof consists of

- leaves representing input clauses,
- inner nodes derived by resolution

$$\frac{C_1 \lor \ell \qquad C_2 \lor \neg \ell}{C_1 \lor C_2}$$



## **Resolution Refutation**

Proof consists of

- leaves representing input clauses,
- inner nodes derived by resolution

$$\frac{C_1 \lor \ell \qquad C_2 \lor \neg \ell}{C_1 \lor C_2}$$

• the root node representing the empty clause.



Label each clause in the resolution refutation with partial interpolant



Label each clause in the resolution refutation with partial interpolant



#### • Syntactic rules for leaves



Label each clause in the resolution refutation with partial interpolant

$$\ell \in A \begin{array}{c} C_1 \lor \ell : I_1 \\ C_2 \lor \neg \ell : I_2 \\ \hline C_1 \lor C_2 : I_1 \lor I_2 \\ \ell \in B \begin{array}{c} C_2 \lor \neg \ell : I_2 \\ \hline C_1 \lor \ell : I_1 \\ \hline C_1 \lor C_2 : I_1 \land I_2 \end{array} \end{array} \xrightarrow{P \lor Q} P \lor \neg Q : I_{P \lor \neg Q} \\ P : I_P \\ \hline P : I_P \\ \hline P : I_P \\ \hline \downarrow : I_1 \\ \downarrow \end{array}$$

- Syntactic rules for leaves
- Interpolant of resolved based on interpolants of antecedents and pivot



Label each clause in the resolution refutation with partial interpolant

$$\ell \in A \begin{array}{c} C_1 \lor \ell : I_1 \\ C_2 \lor \neg \ell : I_2 \\ \hline C_1 \lor C_2 : I_1 \lor I_2 \\ \ell \in B \begin{array}{c} C_2 \lor \neg \ell : I_2 \\ \hline C_1 \lor \ell : I_1 \\ \hline C_1 \lor C_2 : I_1 \land I_2 \end{array} \end{array} \xrightarrow{P \lor Q} P \lor \neg Q : I_{P \lor \neg Q} \\ P : I_P \\ \hline P : I_P \\ \hline P : I_P \\ \hline \downarrow : I_1 \\ \downarrow : I_1 \end{array}$$

- Syntactic rules for leaves
- Interpolant of resolved based on interpolants of antecedents and pivot
- $I_{\perp}$  is desired interpolant.

Christ, Hoenicke (Uni Freiburg)

## Partial Interpolants



Partial interpolant  $I_C$  of clause C is interpolant of

 $A \wedge B \wedge \neg C$ 

## Partial Interpolants

UNI FREIBURG

Partial interpolant  $I_C$  of clause C is interpolant of

 $A \wedge B \wedge \neg C$ 

## How to split $\neg C$ ?

Partial interpolant  $I_C$  of clause C is interpolant of

 $A \wedge B \wedge \neg C$ 

Define  $\neg C \mid A$  and  $\neg C \mid B$  such that

- $symb(\neg C \mid A) \subseteq symb(A)$
- $symb(\neg C \mid B) \subseteq symb(B)$
- $\neg C \leftrightarrow \neg C \mid A \land \neg C \mid B$

FREIBURG

Partial interpolant  $I_C$  of clause C is interpolant of

 $A \wedge B \wedge \neg C$ 

Define  $\neg C \mid A$  and  $\neg C \mid B$  such that

- $symb(\neg C \mid A) \subseteq symb(A)$
- $symb(\neg C \mid B) \subseteq symb(B)$
- $\neg C \leftrightarrow \neg C \mid A \land \neg C \mid B$

Partial interpolant  $I_C$  is interpolant of  $A \land ((\neg C) \downarrow A)$  and  $B \land ((\neg C) \downarrow B)$ .



## Outline



### Motivation

### 2 Preliminaries

- Interpolation in SAT
- Interpolation in SMT

#### 3 From Binary to Tree Interpolation

Tree Interpolation by Example

### 5 Conclusion



- Theory lemmas
- Theory combination lemmas

$$x \le y \lor x \ne y$$
$$x \ge y \lor x \ne y$$
$$x < y \lor x > y \lor x = y$$



- Theory lemmas
- Theory combination lemmas

$$x \le y \lor x \ne y$$
$$x \ge y \lor x \ne y$$
$$x < y \lor x > y \lor x = y$$

might contain literals that are not in the input formulas



#### • literals that contain symbols only in A and symbols only in B: a = b



- literals that contain symbols only in A and symbols only in B: a = b
- literals do not occur in input formulas



- literals that contain symbols only in A and symbols only in B: a = b
- literals do not occur in input formulas
- created by
  - theory combination (Nelson-Oppen, Ackermannization),
  - cuts and extended branches used to solve integer arithmetic,

• ...

UNI FREIBURG

- literals that contain symbols only in A and symbols only in B: a = b
- literals do not occur in input formulas
- created by
  - theory combination (Nelson-Oppen, Ackermannization),
  - cuts and extended branches used to solve integer arithmetic,

• ...

What is  $a = b \mid A$  and  $a = b \mid B$ ?
## Interpolation and Mixed Literals

UNI FREIBURG

Purification: replace  $a \le b$  by  $a \le x \land x \le b$ similar to purification in Nelson-Oppen

## Interpolation and Mixed Literals

Purification: replace  $a \le b$  by  $a \le x \land x \le b$ similar to purification in Nelson-Oppen

Interpolation: Remove purification variable on resolution:  $\frac{C_1 \lor a \le b : I_1(x_1) \qquad C_2 \lor \neg(a \le b) : I_2(x_2)}{C_1 \lor C_2 : I_3}$  

## Interpolation and Mixed Literals

Purification: replace  $a \le b$  by  $a \le x \land x \le b$ similar to purification in Nelson-Oppen

Interpolation: Remove purification variable on resolution:  $\frac{C_1 \lor a \le b : I_1(x_1) \qquad C_2 \lor \neg(a \le b) : I_2(x_2)}{C_1 \lor C_2 : I_3}$ 

#### Rules for uninterpreted functions and linear arithmetic [TACAS 2013]

# Outline



### Motivation

#### 2 Preliminaries

- Interpolation in SAT
- Interpolation in SMT

#### From Binary to Tree Interpolation

Tree Interpolation by Example

#### 5 Conclusion



Binary Interpolation:

UNI FREIBURG

Binary Interpolation:





Tree Interpolation:









Partial tree interpolant  $I_C$  for clause C is tree interpolant of



How to split  $\neg C$ ?

Partial tree interpolant  $I_C$  for clause C is tree interpolant of

$$F_0 \land ((\neg C) \downarrow v_0)$$

$$\uparrow$$

$$F_1 \land ((\neg C) \downarrow v_1)$$

$$F_2 \land ((\neg C) \downarrow v_2) \quad F_3 \land ((\neg C) \downarrow v_3)$$

- One purification function per node
- $\ell \leftrightarrow \exists \overline{x}. \ \bigwedge_{v} \ell \mid v$

- one auxiliary variable for every node in which literal is mixed
- projection of a = b:



- one auxiliary variable for every node in which literal is mixed
- projection of a = b:



- one auxiliary variable for every node in which literal is mixed
- projection of a = b:



- one auxiliary variable for every node in which literal is mixed
- projection of a = b:



# Outline



### Motivation

#### 2 Preliminaries

- Interpolation in SAT
- Interpolation in SMT
- 3 From Binary to Tree Interpolation

#### Tree Interpolation by Example

### 5 Conclusion

## Interpolation Problem and Proof Excerpt

$$\{q, r\}$$

$$q \neq r$$

$$\{c, d\}$$

$$\{c, d\}$$

$$\{b, d, r, f(\cdot)\}$$

$$c = d$$

$$d = b \land f(b) = r$$

$$\{a, c, q, f(\cdot)\}$$

$$a = c \land q = f(a)$$

 $\frac{a = b \lor a \neq c \lor c \neq d \lor d \neq b}{a \neq c \lor c \neq d \lor d \neq b \lor q \neq f(a) \lor f(b) \neq r \lor q = r}$ 

## Interpolation Problem and Proof Excerpt

 $\frac{a = b \lor a \neq c \lor c \neq d \lor d \neq b}{a \neq c \lor c \neq d \lor d \neq b \lor q \neq f(a) \lor f(b) \neq r \lor q = r}$ 

Projection:  $a = b \land q = f(a) \land q \neq r \land f(b) = r$ 







$$\{q, r\}$$

$$q \neq r \land x_2 = x_3$$

$$\checkmark$$

$$\{c, d\}$$

$$\{c, d\}$$

$$\{b, d, r, f(\cdot)\}$$

$$x_1 = x_2$$

$$f(b) = r \land x_3 = b$$

$$\uparrow$$

$$\{a, c, q, f(\cdot)\}$$

$$q = f(a) \land a = x_1$$

$$q \neq r \land x_2 = x_3$$

$$x_1 = x_2 \quad f(b) = r \land x_3 = b$$

$$q = f(a) \land a = x_1$$





FREIBURG







FREIBURG





FREIBURG

Projection:  $a = c \land c = d \land d = b \land a \neq b$ 







Projection:  $a = c \land c = d \land d = b \land a \neq b$ 



- X<sub>1</sub>, X<sub>2</sub>, X<sub>3</sub> set-valued
- $X_i$  separates a and b
- No reasoning about sets required in the solver



$$X_2 \cap X_3 = \emptyset$$

$$c = d \land X_1 \subseteq X_2 \quad d = b \land b \in X_3$$

$$a = c \land a \in X_1$$





Interpolation:  $a = c \land c = d \land d = b \land a \neq b$ 

$$X_2 \cap X_3 = \emptyset$$

$$\overleftarrow{r}$$

$$\vec{r}$$





Interpolation:  $a = c \land c = d \land d = b \land a \neq b$ 

$$X_{2} \cap X_{3} = \emptyset$$

$$c = d \land X_{1} \subseteq X_{2} \quad d = b \land b \in X_{3}$$

$$a = c \land a \in X_{1}$$

$$d \in X_{3}$$

$$c \in X_{1}$$

$$c \in X_{1}$$

Interpolation:  $a = c \land c = d \land d = b \land a \neq b$ 



# Magic Rule for Resolution on Mixed Equalities



- partial interpolant for C<sub>1</sub> ∨ a = b has form I<sub>1</sub>[s ∈ X]
  "If s ∈ X holds, then s = a resp. s = b (whichever is in the subtree)"
- partial interpolant for C<sub>2</sub> ∨ a ≠ b has form I<sub>2</sub>(x)
   "I<sub>2</sub>(x) holds for a resp. b (whichever is in the subtree)"

# Magic Rule for Resolution on Mixed Equalities



- partial interpolant for C<sub>1</sub> ∨ a = b has form l<sub>1</sub>[s ∈ X]
  "If s ∈ X holds, then s = a resp. s = b (whichever is in the subtree)"
- partial interpolant for  $C_2 \lor a \neq b$  has form  $I_2(x)$ " $I_2(x)$  holds for a resp. b (whichever is in the subtree)"
- partial interpolant for the resolvent  $C_1 \lor C_2$

 $I_1[I_2(s)]$ 

## Interpolating the Resolution Step



#### $\mathit{C}_1 \lor \mathit{C}_2$ :

FREIBURG

## Interpolating the Resolution Step


## Outline



#### Motivation

#### 2 Preliminaries

- Interpolation in SAT
- Interpolation in SMT
- 3 From Binary to Tree Interpolation
- Tree Interpolation by Example



## Conclusion

- We extended our interpolation scheme to sequence and tree interpolation.
- Tree interpolation is repeated binary interpolation.
- Scheme computes quantifier-free interpolants in the combination of UF and LA, in particular in QF\_UFLIA.
- No need to manipulate resolution proof.
- Independent of the solver or proof search.
- Correctness proofs still work in progress.

FREIBURG

## Conclusion

- We extended our interpolation scheme to sequence and tree interpolation.
- Tree interpolation is repeated binary interpolation.
- Scheme computes quantifier-free interpolants in the combination of UF and LA, in particular in QF\_UFLIA.
- No need to manipulate resolution proof.
- Independent of the solver or proof search.
- Correctness proofs still work in progress.
- Scheme is implemented in SMTInterpol.

http://ultimate.informatik.uni-freiburg.de/smtinterpol

# Thanks for your attention



UNI FREIBURG