Extending Proof Tree Preserving Interpolation to Sequences and Trees (Work in Progress)

Jürgen Christ Jochen Hoenicke
University of Freiburg

July 8, 2013

Alternative Title

Extending Proof Tree Preserving Interpolation to

Proof Tree Preserving Tree Interpolation

Outline

(1) Motivation

(2) Preliminaries

- Interpolation in SAT
- Interpolation in SMT
(3) From Binary to Tree Interpolation

4 Tree Interpolation by Example
(5) Conclusion

Uses of Tree Interpolation

- Hoare-style program verification [Henzinger 04]
procedure $f(n)$ returns res
if $(n<=0)$
res $:=0$
assert res $>=n$

Uses of Tree Interpolation

- Hoare-style program verification [Henzinger 04]
procedure $f(n)$ returns res
if $(n<=0)$
res $:=0$
assert res $>=n$

Uses of Tree Interpolation

- Hoare-style program verification [Henzinger 04, Heizmann 10]
procedure $f(n)$ returns res if $(n<=0)$

$$
r e s:=0
$$

else
res $:=n+$ call $f(n-1)$
assert res $>=n$

Uses of Tree Interpolation

$$
\begin{aligned}
& n_{c}=n-1
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{l}
\downarrow n \leq \text { res } \\
\downarrow<n
\end{array}
\end{aligned}
$$

- Hoare-style program verification [Henzinger 04, Heizmann 10]

```
procedure \(f(n)\) returns res
if \((n<=0)\)
    res \(:=0\)
    else
    res \(:=n+\) call \(f(n-1)\)
    assert res \(>=n\)
```


Uses of Tree Interpolation

- Hoare-style program verification [Henzinger 04, Heizmann 10]
- Verification of multi-threaded programs and higher order programs [Rybalchenko 12]
- Incremental update checking [Sery 11]
- Solving non-recursive Horn clauses [Rybalchenko 11]
- Inductive Dataflow Graphs [Podelski 13]
- ...

Tree Interpolation Problem

Tree Interpolation Problem

ΛF_{i} is unsatisfiable

Tree Interpolation Problem

ΛF_{i} is unsatisfiable

Tree Interpolation Problem

$\wedge F_{i}$ is unsatisfiable Tree Inductivity:

- $I_{0} \equiv \perp$

Tree Interpolation Problem

ΛF_{i} is unsatisfiable Tree Inductivity:

- $I_{0} \equiv \perp$
- Child interpolants and parent imply parent interpolant

Tree Interpolation Problem

ΛF_{i} is unsatisfiable Tree Inductivity:

- $I_{0} \equiv \perp$
- Child interpolants and parent imply parent interpolant
- Interpolant only contains symbols occurring inside and outside the current subtree

Outline

(1) Motivation
(2) Preliminaries

- Interpolation in SAT
- Interpolation in SMT
(3) From Binary to Tree Interpolation

4 Tree Interpolation by Example
(5) Conclusion

Binary Interpolation

For $A \wedge B \models \mathcal{T} \perp$:

- $A \models \mathcal{T} l$,
- $B \wedge I \vDash \mathcal{T} \perp$,
- $\operatorname{symb}(/) \subseteq \operatorname{symb}(A) \cap \operatorname{symb}(B)$

Binary Interpolation

$-\frac{u}{2}$

$$
\begin{array}{ll}
\text { For } A \wedge B \models \mathcal{T} \perp \text { : } \\
\text { - } A \models \mathcal{T} l \\
\text { - } B \wedge I \models \mathcal{T} \perp, & \\
\text { - } \operatorname{symb}(I) \subseteq \operatorname{symb}(A) \cap \operatorname{symb}(B) & A
\end{array}
$$

Outline

 $-\frac{u}{2}$(1) Motivation
(2) Preliminaries

- Interpolation in SAT
- Interpolation in SMT
(3) From Binary to Tree Interpolation

4 Tree Interpolation by Example

Resolution Refutation

Proof consists of

- leaves representing input clauses,

Resolution Refutation

Proof consists of

- leaves representing input clauses,
- inner nodes derived by resolution

$$
\frac{C_{1} \vee \ell \quad C_{2} \vee \neg \ell}{C_{1} \vee C_{2}}
$$

Resolution Refutation

Proof consists of

- leaves representing input clauses,
- inner nodes derived by resolution

$$
\frac{C_{1} \vee \ell \quad C_{2} \vee \neg \ell}{C_{1} \vee C_{2}}
$$

- the root node representing the empty clause.

Labelled Resolution Refutation

Label each clause in the resolution refutation with partial interpolant

$$
P \vee Q: I_{P \vee Q} P \vee \neg Q: I_{P \vee \neg Q}
$$

Labelled Resolution Refutation

Label each clause in the resolution refutation with partial interpolant

$$
P \vee Q: I_{P \vee Q} \quad P \vee \neg Q: I_{P \vee \neg Q}
$$

- Syntactic rules for leaves

Labelled Resolution Refutation

Label each clause in the resolution refutation with partial interpolant

$$
\begin{array}{cc:l}
C_{1} \vee \ell: I_{1} \\
\ell \in A \frac{C_{2} \vee \neg \ell: I_{2}}{C_{1} \vee C_{2}: I_{1} \vee I_{2}} \\
\ell \in B \frac{C_{1} \vee \ell: I_{1}}{C_{1} \vee C_{2}: I_{1} \wedge I_{2}} & P: I_{P \vee Q} & P \vee \neg Q: I_{P \vee \neg Q} \\
& & \perp: I_{\perp}
\end{array}
$$

- Syntactic rules for leaves
- Interpolant of resolved based on interpolants of antecedents and pivot

Labelled Resolution Refutation

Label each clause in the resolution refutation with partial interpolant

$$
\begin{aligned}
& C_{1} \vee \ell: I_{1} \quad P \vee Q: I_{P \vee Q} \quad P \vee \neg Q: I_{P \vee \neg Q} \\
& \ell \in A \frac{C_{2} \vee \neg \ell: I_{2}}{C_{1} \vee C_{2}: I_{1} \vee I_{2}} \\
& \begin{array}{c}
C_{1} \vee \ell: I_{1} \\
C_{2} \vee \neg \ell: I_{2} \\
C_{1} \vee C_{2}: I_{1} \wedge I_{2}
\end{array}
\end{aligned}
$$

- Syntactic rules for leaves
- Interpolant of resolved based on interpolants of antecedents and pivot I_{\perp} is desired interpolant.

Partial Interpolants

Partial interpolant I_{C} of clause C is interpolant of

$$
A \wedge B \wedge \neg C
$$

Partial Interpolants

Partial interpolant I_{C} of clause C is interpolant of

$$
A \wedge B \wedge \neg C
$$

How to split $\neg C$?

Partial Interpolants

Partial interpolant I_{C} of clause C is interpolant of

$$
A \wedge B \wedge \neg C
$$

Define $\neg C \downharpoonright A$ and $\neg C \downharpoonright B$ such that

- $\operatorname{symb}(\neg C \downharpoonright A) \subseteq \operatorname{symb}(A)$
- symb $(\neg C \downharpoonright B) \subseteq \operatorname{symb}(B)$
- $\neg C \leftrightarrow \neg C \downharpoonright A \wedge \neg C \downharpoonright B$

Partial Interpolants

Partial interpolant I_{C} of clause C is interpolant of

$$
A \wedge B \wedge \neg C
$$

Define $\neg C \downharpoonright A$ and $\neg C \downharpoonright B$ such that

- $\operatorname{symb}(\neg C \downharpoonright A) \subseteq \operatorname{symb}(A)$
- $\operatorname{symb}(\neg C \downharpoonright B) \subseteq \operatorname{symb}(B)$
- $\neg C \leftrightarrow \neg C \downharpoonright A \wedge \neg C \downharpoonright B$

Partial interpolant I_{C} is interpolant of $A \wedge((\neg C) \downharpoonright A)$ and $B \wedge((\neg C) \downharpoonright B)$.

Outline

(1) Motivation
(2) Preliminaries

- Interpolation in SAT
- Interpolation in SMT
(3) From Binary to Tree Interpolation

4 Tree Interpolation by Example

Additional Leaves

- Theory lemmas
- Theory combination lemmas

$$
\begin{aligned}
& x \leq y \vee x \neq y \\
& x \geq y \vee x \neq y \\
& x<y \vee x>y \vee x=y
\end{aligned}
$$

Additional Leaves

- Theory lemmas
- Theory combination lemmas

$$
\begin{aligned}
& x \leq y \vee x \neq y \\
& x \geq y \vee x \neq y \\
& x<y \vee x>y \vee x=y
\end{aligned}
$$

might contain literals that are not in the input formulas

Mixed Literals

- literals that contain symbols only in A and symbols only in $B: a=b$

Mixed Literals

- literals that contain symbols only in A and symbols only in $B: a=b$
- literals do not occur in input formulas

Mixed Literals

- literals that contain symbols only in A and symbols only in $B: a=b$
- literals do not occur in input formulas
- created by
- theory combination (Nelson-Oppen, Ackermannization),
- cuts and extended branches used to solve integer arithmetic,

Mixed Literals

- literals that contain symbols only in A and symbols only in $B: a=b$
- literals do not occur in input formulas
- created by
- theory combination (Nelson-Oppen, Ackermannization),
- cuts and extended branches used to solve integer arithmetic,
- ...

$$
\text { What is } a=b \downharpoonright A \text { and } a=b \downharpoonright B \text { ? }
$$

Interpolation and Mixed Literals

Purification:
replace $a \leq b$ by $a \leq x \wedge x \leq b$
similar to purification in Nelson-Oppen

Interpolation and Mixed Literals

Purification:
replace $a \leq b$ by $a \leq x \wedge x \leq b$
similar to purification in Nelson-Oppen

Interpolation:
Remove purification variable on resolution:

$$
\frac{C_{1} \vee a \leq b: I_{1}\left(x_{1}\right) \quad C_{2} \vee \neg(a \leq b): I_{2}\left(x_{2}\right)}{C_{1} \vee C_{2}: I_{3}}
$$

Interpolation and Mixed Literals

Purification:
replace $a \leq b$ by $a \leq x \wedge x \leq b$
similar to purification in Nelson-Oppen

Interpolation:
Remove purification variable on resolution:

$$
\frac{C_{1} \vee a \leq b: I_{1}\left(x_{1}\right) \quad C_{2} \vee \neg(a \leq b): I_{2}\left(x_{2}\right)}{C_{1} \vee C_{2}: I_{3}}
$$

Rules for uninterpreted functions and linear arithmetic [TACAS 2013]

Outline

(1) Motivation
(2) Preliminaries

- Interpolation in SAT
- Interpolation in SMT
(3) From Binary to Tree Interpolation

4 Tree Interpolation by Example
(5) Conclusion

Idea

Binary Interpolation:

$C_{3}: I_{3} C_{4}: I_{4}$

Idea

Binary Interpolation:

Tree Interpolation:

Idea

Tree Interpolation:

Tree Interpolation:

Partial Tree Interpolants

Partial tree interpolant I_{C} for clause C is tree interpolant of

How to split $\neg C$?

Partial Tree Interpolants

Partial tree interpolant I_{C} for clause C is tree interpolant of

- One purification function per node
- $\ell \leftrightarrow \exists \bar{x} . \bigwedge_{v} \ell \downharpoonright v$

Projection of Mixed Literals

- one auxiliary variable for every node in which literal is mixed
- projection of $a=b$:

Projection of Mixed Literals

- one auxiliary variable for every node in which literal is mixed
- projection of $a=b$:

Projection of Mixed Literals

- one auxiliary variable for every node in which literal is mixed
- projection of $a=b$:

Projection of Mixed Literals

- one auxiliary variable for every node in which literal is mixed
- projection of $a=b$:

Outline

(1) Motivation
(2) Preliminaries

- Interpolation in SAT
- Interpolation in SMT
(3) From Binary to Tree Interpolation

4 Tree Interpolation by Example

Interpolation Problem and Proof Excerpt

$\{q, r\}$	
$q \neq r$	
\nearrow	K
$\{c, d\}$	$\{b, d, r, f(\cdot)\}$
$c=d$	$d=b \wedge f(b)=r$
\uparrow	
$\{a, c, q, f(\cdot)\}$	
$a=c \wedge q=f(a)$	

$$
\frac{a=b \vee a \neq c \vee c \neq d \vee d \neq b \quad a \neq b \vee q \neq f(a) \vee f(b) \neq r \vee q=r}{a \neq c \vee c \neq d \vee d \neq b \vee q \neq f(a) \vee f(b) \neq r \vee q=r}
$$

Interpolation Problem and Proof Excerpt

$$
\begin{aligned}
& \{q, r\} \\
& q \neq r \\
& \{c, d\} \\
& c=d \\
& \uparrow \\
& \{a, c, q, f(\cdot)\} \\
& a=c \wedge q=f(a)
\end{aligned}
$$

$$
\frac{a=b \vee a \neq c \vee c \neq d \vee d \neq b \quad a \neq b \vee q \neq f(a) \vee f(b) \neq r \vee q=r}{a \neq c \vee c \neq d \vee d \neq b \vee q \neq f(a) \vee f(b) \neq r \vee q=r}
$$

Projection: $a=b \wedge q=f(a) \wedge q \neq r \wedge f(b)=r$

$$
\begin{aligned}
& \{q, r\} \\
& \{c, d\} \quad \text { 亿 } \quad\{b, d, r, f(\cdot)\} \\
& \uparrow \\
& \{a, c, q, f(\cdot)\}
\end{aligned}
$$

Projection: $a=b \wedge q=f(a) \wedge q \neq r \wedge f(b)=r$

Projection: $a=b \wedge q=f(a) \wedge q \neq r \wedge f(b)=r$

\[

\]

Interpolation: $a=b \wedge q=f(a) \wedge f(b)=r \wedge q \neq r$

$$
\begin{aligned}
& q \neq r \wedge x_{2}=x_{3} \\
& x_{1}=x_{2} \quad f(b)=r \wedge x_{3}=b \\
& q=f(a)^{\hat{\wedge}} \wedge a=x_{1} \\
& f(b)-r
\end{aligned}
$$

।

Interpolation: $a=b \wedge q=f(a) \wedge f(b)=r \wedge q \neq r$

$$
\begin{aligned}
& q \neq r \wedge x_{2}=x_{3} \\
& x_{1}=x_{2} \quad f(b)=r \wedge x_{3}=b \\
& q=f(a)^{\wedge} \wedge a=x_{1} \\
& f\left(x_{3}\right)=r \\
& \text { | } \\
& f(b)-r
\end{aligned}
$$

Interpolation: $a=b \wedge q=f(a) \wedge f(b)=r \wedge q \neq r$

$$
\begin{aligned}
& q \neq r \wedge x_{2}=x_{3} \\
& x_{1}=x_{2} \quad f(b)=r \wedge x_{3}=b \\
& q=f(a) \wedge a=x_{1} \\
& /^{\perp} \\
& f\left(x_{3}\right)=r
\end{aligned}
$$

Interpolation: $a=b \wedge q=f(a) \wedge f(b)=r \wedge q \neq r$

$$
\begin{aligned}
& q \neq r \wedge x_{2}=x_{3} \\
& x_{1}=x_{2} \quad f(b)=r \wedge x_{3}=b \\
& q=f(a)^{\wedge} \wedge a=x_{1}
\end{aligned}
$$

Projection: $a=c \wedge c=d \wedge d=b \wedge a \neq b$

\[

\]

Projection: $a=c \wedge c=d \wedge d=b \wedge a \neq b$

$$
\begin{aligned}
& \{a, c, q, f(\cdot)\} \\
& a=c
\end{aligned}
$$

Projection: $a=c \wedge c=d \wedge d=b \wedge a \neq b$

\[

\]

- X_{1}, X_{2}, X_{3} set-valued
- X_{i} separates a and b
- No reasoning about sets required in the solver

Interpolation: $a=c \wedge c=d \wedge d=b \wedge a \neq b$

$$
\begin{gathered}
X_{2} \cap X_{3}=\emptyset \\
c=d \wedge X_{1} \stackrel{R}{\subseteq} X_{2} \quad d \stackrel{R}{=} b \wedge b \in X_{3} \\
a=c \wedge \hat{\wedge} a \in X_{1}
\end{gathered}
$$

$$
\begin{aligned}
& X_{1}-X_{2}-X_{3} \\
& a-c-d-b
\end{aligned}
$$

Interpolation: $a=c \wedge c=d \wedge d=b \wedge a \neq b$
$-\frac{0}{2}$

$$
\begin{gathered}
X_{2} \cap X_{3}=\emptyset \\
c=d \wedge X_{1} \stackrel{\rightharpoonup}{\subseteq} X_{2} \quad d \stackrel{R}{=} b \wedge b \in X_{3} \\
a=c \wedge a \in X_{1} \\
\vdots X_{1}--X_{2}-X_{3} \\
a-c-d-b
\end{gathered}
$$

Interpolation: $a=c \wedge c=d \wedge d=b \wedge a \neq b$

$$
\begin{gathered}
\begin{array}{l}
X_{2} \cap X_{3}=\emptyset \\
\vec{r} \\
c=d \wedge X_{1} \subseteq X_{2} \quad d=b \wedge b \in X_{3} \\
a=c \wedge a \in X_{1}
\end{array} \\
\hdashline X_{1}--X_{2}-X_{3} \\
a-c-d-b
\end{gathered}
$$

Interpolation: $a=c \wedge c=d \wedge d=b \wedge a \neq b$

$$
\begin{aligned}
& X_{2} \cap X_{3}=\emptyset \\
& c=d \wedge X_{1} \cong X_{2} \quad d \stackrel{k}{=} b \wedge b \in X_{3} \\
& a=c \hat{\wedge} a \in X_{1} \\
& \begin{array}{l}
-X_{1}-X_{2}-X_{3} \\
a-c-d-b
\end{array} \\
& c \in X_{1}
\end{aligned}
$$

Magic Rule for Resolution on Mixed Equalities

- partial interpolant for $C_{1} \vee a=b$ has form $I_{1}[s \in X]$ "If $s \in X$ holds, then $s=a$ resp. $s=b$ (whichever is in the subtree)"
- partial interpolant for $C_{2} \vee a \neq b$ has form $I_{2}(x)$ " $l_{2}(x)$ holds for a resp. b (whichever is in the subtree)"

Magic Rule for Resolution on Mixed Equalities

- partial interpolant for $C_{1} \vee a=b$ has form $I_{1}[s \in X]$
"If $s \in X$ holds, then $s=a$ resp. $s=b$ (whichever is in the subtree)"
- partial interpolant for $C_{2} \vee a \neq b$ has form $I_{2}(x)$
" $I_{2}(x)$ holds for a resp. b (whichever is in the subtree)"
- partial interpolant for the resolvent $C_{1} \vee C_{2}$

$$
I_{1}\left[I_{2}(s)\right]
$$

Interpolating the Resolution Step

$C_{1} \vee a=b: d \in X_{2} d \in X_{3}$
$C_{2} \vee a \neq b: q=f\left(x_{2}\right) f\left(x_{3}\right)=r$

$c \in X_{1}$

$$
q=f\left(x_{1}\right)
$$

$C_{1} \vee C_{2}:$

Interpolating the Resolution Step

$C_{1} \vee a=b: d \in X_{2} d \in X_{3}$
$C_{2} \vee a \neq b: q=f\left(x_{2}\right) f\left(x_{3}\right)=r$

$c \in X_{1}$

$$
q=f\left(x_{1}\right)
$$

Outline

(1) Motivation
(2) Preliminaries

- Interpolation in SAT
- Interpolation in SMT
(3) From Binary to Tree Interpolation

4 Tree Interpolation by Example

(5) Conclusion

Conclusion

- We extended our interpolation scheme to sequence and tree interpolation.
- Tree interpolation is repeated binary interpolation.
- Scheme computes quantifier-free interpolants in the combination of UF and LA, in particular in QF_UFLIA.
- No need to manipulate resolution proof.
- Independent of the solver or proof search.
- Correctness proofs still work in progress.

Conclusion

- We extended our interpolation scheme to sequence and tree interpolation.
- Tree interpolation is repeated binary interpolation.
- Scheme computes quantifier-free interpolants in the combination of UF and LA, in particular in QF_UFLIA.
- No need to manipulate resolution proof.
- Independent of the solver or proof search.
- Correctness proofs still work in progress.
- Scheme is implemented in SMTInterpol.
http://ultimate.informatik.uni-freiburg.de/smtinterpol

> Thanks for your attention

