SyMT: finding symmetries in SMT formulas

 (Work in progress)Carlos Areces, David Déharbe, Pascal Fontaine, and Ezequiel Orbe
UFRN (Natal, Brazil)
Loria, INRIA, Université de Nancy (France)
FaMaF (Córdoba, Argentina)

SMT, July 8-9, 2013

Outline

(1) Introduction
(2) Symmetry breaking: previous technique
(3) Finding symmetries with graph isomorphism tools
(4) Teaser
(5) Conclusion

Introduction

Satisfiability solving:

- problem encoding of primal importance
- doing many times the same thing is a waste of time

Previously (CADE 2011):

- breaking symmetries on QF_UF gives impressive results

In this talk:

- beyond tailored heuristics
- generalize symmetry finding

Outline

(1) Introduction
(2) Symmetry breaking: previous technique
(3) Finding symmetries with graph isomorphism tools

4 Teaser
(5) Conclusion

Symmetry breaking: break a factorial

- 4 distinct pigeons:

$$
\begin{aligned}
& p_{1} \neq p_{2} \wedge p_{1} \neq p_{3} \wedge p_{1} \neq p_{4} \wedge \\
& \quad p_{2} \neq p_{3} \wedge p_{2} \neq p_{4} \wedge p_{3} \neq p_{4}
\end{aligned}
$$

- every pigeon in a hole:
$p_{1}=B_{1} \vee p_{1}=B_{2} \vee p_{1}=B_{3}$
$p_{2}=B_{1} \vee p_{2}=B_{2} \vee p_{2}=B_{3}$
$p_{3}=B_{1} \vee p_{3}=B_{2} \vee p_{3}=B_{3}$
$p_{4}=B_{1} \vee p_{4}=B_{2} \vee p_{4}=B_{3}$
- Let's satisfy every clause:

- Whatever the colors, there will always be one pigeon out
- symmetries imply many similar reasoning paths
- detecting symmetries a priori: search one path out of many
- large decrease of search space, large decrease in solving times

Symmetry breaking: break a factorial

- 4 distinct pigeons:

$$
\begin{aligned}
& p_{1} \neq p_{2} \wedge p_{1} \neq p_{3} \wedge p_{1} \neq p_{4} \wedge \\
& \quad p_{2} \neq p_{3} \wedge p_{2} \neq p_{4} \wedge p_{3} \neq p_{4}
\end{aligned}
$$

- every pigeon in a hole:
$p_{1}=B_{1} \vee p_{1}=B_{2} \vee p_{1}=B_{3}$
$p_{2}=B_{1} \vee p_{2}=B_{2} \vee p_{2}=B_{3}$
$p_{3}=B_{1} \vee p_{3}=B_{2} \vee p_{3}=B_{3}$
$p_{4}=B_{1} \vee p_{4}=B_{2} \vee p_{4}=B_{3}$

- Let's satisfy every clause:

$$
p_{1}=B_{1}
$$

- Whatever the colors, there will always be one pigeon out
- symmetries imply many similar reasoning paths
- detecting symmetries a priori: search one path out of many
- large decrease of search space, large decrease in solving times

Symmetry breaking: break a factorial

- 4 distinct pigeons:

$$
\begin{aligned}
& p_{1} \neq p_{2} \wedge p_{1} \neq p_{3} \wedge p_{1} \neq p_{4} \wedge \\
& \quad p_{2} \neq p_{3} \wedge p_{2} \neq p_{4} \wedge p_{3} \neq p_{4}
\end{aligned}
$$

- every pigeon in a hole:
$p_{1}=B_{1} \vee p_{1}=B_{2} \vee p_{1}=B_{3}$
$p_{2}=B_{1} \vee p_{2}=B_{2} \vee p_{2}=B_{3}$
$p_{3}=B_{1} \vee p_{3}=B_{2} \vee p_{3}=B_{3}$
$p_{4}=B_{1} \vee p_{4}=B_{2} \vee p_{4}=B_{3}$

- Let's satisfy every clause:

$$
p_{1}=B_{1}, p_{2}=B_{2}
$$

- Whatever the colors, there will always be one pigeon out
- symmetries imply many similar reasoning paths
- detecting symmetries a priori: search one path out of many
- large decrease of search space, large decrease in solving times

Symmetry breaking: break a factorial

- 4 distinct pigeons:

$$
\begin{aligned}
& p_{1} \neq p_{2} \wedge p_{1} \neq p_{3} \wedge p_{1} \neq p_{4} \wedge \\
& \quad p_{2} \neq p_{3} \wedge p_{2} \neq p_{4} \wedge p_{3} \neq p_{4}
\end{aligned}
$$

- every pigeon in a hole:
$p_{1}=B_{1} \vee p_{1}=B_{2} \vee p_{1}=B_{3}$
$p_{2}=B_{1} \vee p_{2}=B_{2} \vee p_{2}=B_{3}$
$p_{3}=B_{1} \vee p_{3}=B_{2} \vee p_{3}=B_{3}$
$p_{4}=B_{1} \vee p_{4}=B_{2} \vee p_{4}=B_{3}$

- Let's satisfy every clause:

$$
p_{1}=B_{1}, p_{2}=B_{2}, p_{3}=B_{3}
$$

- Whatever the colors, there will always be one pigeon out
- symmetries imply many similar reasoning paths
- detecting symmetries a priori: search one path out of many
- large decrease of search space, large decrease in solving times

Symmetry breaking: break a factorial

- 4 distinct pigeons:

$$
\begin{aligned}
& p_{1} \neq p_{2} \wedge p_{1} \neq p_{3} \wedge p_{1} \neq p_{4} \wedge \\
& \quad p_{2} \neq p_{3} \wedge p_{2} \neq p_{4} \wedge p_{3} \neq p_{4}
\end{aligned}
$$

- every pigeon in a hole:
$p_{1}=B_{1} \vee p_{1}=B_{2} \vee p_{1}=B_{3}$
$p_{2}=B_{1} \vee p_{2}=B_{2} \vee p_{2}=B_{3}$
$p_{3}=B_{1} \vee p_{3}=B_{2} \vee p_{3}=B_{3}$
$p_{4}=B_{1} \vee p_{4}=B_{2} \vee p_{4}=B_{3}$

- Let's satisfy every clause:

$$
p_{1}=B_{1}, p_{2}=B_{2}, p_{3}=B_{3}, p_{4}=?
$$

- Whatever the colors, there will always be one pigeon out
- symmetries imply many similar reasoning paths
- detecting symmetries a priori: search one path out of many
- large decrease of search space, large decrease in solving times

Symmetry breaking: break a factorial

- 4 distinct pigeons:

$$
\begin{aligned}
& p_{1} \neq p_{2} \wedge p_{1} \neq p_{3} \wedge p_{1} \neq p_{4} \wedge \\
& \quad p_{2} \neq p_{3} \wedge p_{2} \neq p_{4} \wedge p_{3} \neq p_{4}
\end{aligned}
$$

- every pigeon in a hole:
$p_{1}=B_{1} \vee p_{1}=B_{2} \vee p_{1}=B_{3}$
$p_{2}=B_{1} \vee p_{2}=B_{2} \vee p_{2}=B_{3}$
$p_{3}=B_{1} \vee p_{3}=B_{2} \vee p_{3}=B_{3}$
$p_{4}=B_{1} \vee p_{4}=B_{2} \vee p_{4}=B_{3}$

- Let's satisfy every clause:

$$
p_{1}=B_{1}, p_{2}=B_{2}, p_{3}=B_{3}
$$

- Whatever the colors, there will always be one pigeon out
- symmetries imply many similar reasoning paths
- detecting symmetries a priori: search one path out of many
- large decrease of search space, large decrease in solving times

Symmetry breaking: break a factorial

- 4 distinct pigeons:

$$
\begin{aligned}
& p_{1} \neq p_{2} \wedge p_{1} \neq p_{3} \wedge p_{1} \neq p_{4} \wedge \\
& \quad p_{2} \neq p_{3} \wedge p_{2} \neq p_{4} \wedge p_{3} \neq p_{4}
\end{aligned}
$$

- every pigeon in a hole:
$p_{1}=B_{1} \vee p_{1}=B_{2} \vee p_{1}=B_{3}$
$p_{2}=B_{1} \vee p_{2}=B_{2} \vee p_{2}=B_{3}$
$p_{3}=B_{1} \vee p_{3}=B_{2} \vee p_{3}=B_{3}$
$p_{4}=B_{1} \vee p_{4}=B_{2} \vee p_{4}=B_{3}$

- Let's satisfy every clause:

$$
p_{1}=B_{1}, p_{2}=B_{2}
$$

- Whatever the colors, there will always be one pigeon out
- symmetries imply many similar reasoning paths
- detecting symmetries a priori: search one path out of many
- large decrease of search space, large decrease in solving times

Symmetry breaking: break a factorial

- 4 distinct pigeons:

$$
\begin{aligned}
& p_{1} \neq p_{2} \wedge p_{1} \neq p_{3} \wedge p_{1} \neq p_{4} \wedge \\
& \quad p_{2} \neq p_{3} \wedge p_{2} \neq p_{4} \wedge p_{3} \neq p_{4}
\end{aligned}
$$

- every pigeon in a hole:
$p_{1}=B_{1} \vee p_{1}=B_{2} \vee p_{1}=B_{3}$
$p_{2}=B_{1} \vee p_{2}=B_{2} \vee p_{2}=B_{3}$
$p_{3}=B_{1} \vee p_{3}=B_{2} \vee p_{3}=B_{3}$
$p_{4}=B_{1} \vee p_{4}=B_{2} \vee p_{4}=B_{3}$

- Let's satisfy every clause:

$$
p_{1}=B_{1}, p_{2}=B_{2}, p_{4}=B_{3}
$$

- Whatever the colors, there will always be one pigeon out
- symmetries imply many similar reasoning paths
- detecting symmetries a priori: search one path out of many
- large decrease of search space, large decrease in solving times

Symmetry breaking: break a factorial

- 4 distinct pigeons:

$$
\begin{aligned}
& p_{1} \neq p_{2} \wedge p_{1} \neq p_{3} \wedge p_{1} \neq p_{4} \wedge \\
& \quad p_{2} \neq p_{3} \wedge p_{2} \neq p_{4} \wedge p_{3} \neq p_{4}
\end{aligned}
$$

- every pigeon in a hole:
$p_{1}=B_{1} \vee p_{1}=B_{2} \vee p_{1}=B_{3}$
$p_{2}=B_{1} \vee p_{2}=B_{2} \vee p_{2}=B_{3}$
$p_{3}=B_{1} \vee p_{3}=B_{2} \vee p_{3}=B_{3}$
$p_{4}=B_{1} \vee p_{4}=B_{2} \vee p_{4}=B_{3}$

- Let's satisfy every clause:

$$
p_{1}=B_{1}, p_{2}=B_{2}, p_{4}=B_{3}, p_{3}=?
$$

- Whatever the colors, there will always be one pigeon out
- symmetries imply many similar reasoning paths
- detecting symmetries a priori: search one path out of many
- large decrease of search space, large decrease in solving times

Symmetry breaking: break a factorial

- 4 distinct pigeons:

$$
\begin{aligned}
& p_{1} \neq p_{2} \wedge p_{1} \neq p_{3} \wedge p_{1} \neq p_{4} \wedge \\
& \quad p_{2} \neq p_{3} \wedge p_{2} \neq p_{4} \wedge p_{3} \neq p_{4}
\end{aligned}
$$

- every pigeon in a hole:
$p_{1}=B_{1} \vee p_{1}=B_{2} \vee p_{1}=B_{3}$
$p_{2}=B_{1} \vee p_{2}=B_{2} \vee p_{2}=B_{3}$
$p_{3}=B_{1} \vee p_{3}=B_{2} \vee p_{3}=B_{3}$
$p_{4}=B_{1} \vee p_{4}=B_{2} \vee p_{4}=B_{3}$

- Let's satisfy every clause:

$$
p_{1}=B_{1}, p_{2}=B_{2}, p_{4}=B_{3}
$$

- Whatever the colors, there will always be one pigeon out
- symmetries imply many similar reasoning paths
- detecting symmetries a priori: search one path out of many
- large decrease of search space, large decrease in solving times

Symmetry breaking: break a factorial

- 4 distinct pigeons:

$$
\begin{aligned}
& p_{1} \neq p_{2} \wedge p_{1} \neq p_{3} \wedge p_{1} \neq p_{4} \wedge \\
& \quad p_{2} \neq p_{3} \wedge p_{2} \neq p_{4} \wedge p_{3} \neq p_{4}
\end{aligned}
$$

- every pigeon in a hole:
$p_{1}=B_{1} \vee p_{1}=B_{2} \vee p_{1}=B_{3}$
$p_{2}=B_{1} \vee p_{2}=B_{2} \vee p_{2}=B_{3}$
$p_{3}=B_{1} \vee p_{3}=B_{2} \vee p_{3}=B_{3}$
$p_{4}=B_{1} \vee p_{4}=B_{2} \vee p_{4}=B_{3}$

- Let's satisfy every clause:

$$
p_{1}=B_{1}, p_{2}=B_{2}
$$

- Whatever the colors, there will always be one pigeon out
- symmetries imply many similar reasoning paths
- detecting symmetries a priori: search one path out of many
- large decrease of search space, large decrease in solving times

Symmetry breaking: break a factorial

- 4 distinct pigeons:

$$
\begin{aligned}
& p_{1} \neq p_{2} \wedge p_{1} \neq p_{3} \wedge p_{1} \neq p_{4} \wedge \\
& \quad p_{2} \neq p_{3} \wedge p_{2} \neq p_{4} \wedge p_{3} \neq p_{4}
\end{aligned}
$$

- every pigeon in a hole:
$p_{1}=B_{1} \vee p_{1}=B_{2} \vee p_{1}=B_{3}$
$p_{2}=B_{1} \vee p_{2}=B_{2} \vee p_{2}=B_{3}$
$p_{3}=B_{1} \vee p_{3}=B_{2} \vee p_{3}=B_{3}$
$p_{4}=B_{1} \vee p_{4}=B_{2} \vee p_{4}=B_{3}$

- Let's satisfy every clause:

$$
p_{1}=B_{1}
$$

- Whatever the colors, there will always be one pigeon out
- symmetries imply many similar reasoning paths
- detecting symmetries a priori: search one path out of many
- large decrease of search space, large decrease in solving times

Symmetry breaking: break a factorial

- 4 distinct pigeons:

$$
\begin{aligned}
& p_{1} \neq p_{2} \wedge p_{1} \neq p_{3} \wedge p_{1} \neq p_{4} \wedge \\
& \quad p_{2} \neq p_{3} \wedge p_{2} \neq p_{4} \wedge p_{3} \neq p_{4}
\end{aligned}
$$

- every pigeon in a hole:
$p_{1}=B_{1} \vee p_{1}=B_{2} \vee p_{1}=B_{3}$
$p_{2}=B_{1} \vee p_{2}=B_{2} \vee p_{2}=B_{3}$
$p_{3}=B_{1} \vee p_{3}=B_{2} \vee p_{3}=B_{3}$
$p_{4}=B_{1} \vee p_{4}=B_{2} \vee p_{4}=B_{3}$

- Let's satisfy every clause:

$$
p_{1}=B_{1}, p_{3}=B_{2}
$$

- Whatever the colors, there will always be one pigeon out
- symmetries imply many similar reasoning paths
- detecting symmetries a priori: search one path out of many
- large decrease of search space, large decrease in solving times

Symmetry breaking: break a factorial

- 4 distinct pigeons:

$$
\begin{aligned}
& p_{1} \neq p_{2} \wedge p_{1} \neq p_{3} \wedge p_{1} \neq p_{4} \wedge \\
& \quad p_{2} \neq p_{3} \wedge p_{2} \neq p_{4} \wedge p_{3} \neq p_{4}
\end{aligned}
$$

- every pigeon in a hole:
$p_{1}=B_{1} \vee p_{1}=B_{2} \vee p_{1}=B_{3}$
$p_{2}=B_{1} \vee p_{2}=B_{2} \vee p_{2}=B_{3}$
$p_{3}=B_{1} \vee p_{3}=B_{2} \vee p_{3}=B_{3}$
$p_{4}=B_{1} \vee p_{4}=B_{2} \vee p_{4}=B_{3}$

- Let's satisfy every clause: $p_{1}=B_{1}$
- Whatever the colors, there will always be one pigeon out
- symmetries imply many similar reasoning paths
- detecting symmetries a priori: search one path out of many
- large decrease of search space, large decrease in solving times

Previous technique

The formula:

$$
\begin{aligned}
& p_{1} \neq p_{2} \wedge p_{1} \neq p_{3} \wedge p_{1} \neq p_{4} \wedge p_{2} \neq p_{3} \wedge p_{2} \neq p_{4} \wedge p_{3} \neq p_{4} \\
& p_{1}=B_{1} \vee p_{1}=B_{2} \vee p_{1}=B_{3} \\
& p_{2}=B_{1} \vee p_{2}=B_{2} \vee p_{2}=B_{3} \\
& p_{3}=B_{1} \vee p_{3}=B_{2} \vee p_{3}=B_{3} \\
& p_{4}=B_{1} \vee p_{4}=B_{2} \vee p_{4}=B_{3}
\end{aligned}
$$

- B_{1}, B_{2}, B_{3} appear the same number of times, in the same number of clauses,...
- formula preserved by permutation of $B_{1}, B_{2}, B_{3}(\mathrm{~V}, \wedge$ commutative)
- $p_{1}=B_{1} \vee p_{1}=B_{2} \vee p_{1}=B_{3}$ holds, so let's say $p_{1}=B_{1}$
- resulting formula is still symmetric w.r.t. B_{2}, B_{3}. Repeat

Previous technique

The formula:

$$
\begin{aligned}
& p_{1} \neq p_{2} \wedge p_{1} \neq p_{3} \wedge p_{1} \neq p_{4} \wedge p_{2} \neq p_{3} \wedge p_{2} \neq p_{4} \wedge p_{3} \neq p_{4} \\
& p_{1}=B_{1} \vee p_{1}=B_{2} \vee p_{1}=B_{3} \\
& p_{2}=B_{1} \vee p_{2}=B_{2} \vee p_{2}=B_{3} \\
& p_{3}=B_{1} \vee p_{3}=B_{2} \vee p_{3}=B_{3} \\
& p_{4}=B_{1} \vee p_{4}=B_{2} \vee p_{4}=B_{3}
\end{aligned}
$$

- B_{1}, B_{2}, B_{3} appear the same number of times, in the same number of clauses,...
- formula preserved by permutation of $B_{1}, B_{2}, B_{3}(\vee, \wedge$ commutative $)$
- resulting formula is still symmetric w.r.t. B_{2}, B_{3}. Repeat

Previous technique

The formula:

$$
\begin{aligned}
& p_{1} \neq p_{2} \wedge p_{1} \neq p_{3} \wedge p_{1} \neq p_{4} \wedge p_{2} \neq p_{3} \wedge p_{2} \neq p_{4} \wedge p_{3} \neq p_{4} \\
& p_{1}=B_{1} \vee p_{1}=B_{2} \vee p_{1}=B_{3} \\
& p_{2}=B_{1} \vee p_{2}=B_{2} \vee p_{2}=B_{3} \\
& p_{3}=B_{1} \vee p_{3}=B_{2} \vee p_{3}=B_{3} \\
& p_{4}=B_{1} \vee p_{4}=B_{2} \vee p_{4}=B_{3} \\
& p_{1}=B_{1}
\end{aligned}
$$

- B_{1}, B_{2}, B_{3} appear the same number of times, in the same number of clauses,...
- formula preserved by permutation of $B_{1}, B_{2}, B_{3}(\vee, \wedge$ commutative)
- $p_{1}=B_{1} \vee p_{1}=B_{2} \vee p_{1}=B_{3}$ holds, so let's say $p_{1}=B_{1}$

Previous technique

The formula:

$$
\begin{aligned}
& p_{1} \neq p_{2} \wedge p_{1} \neq p_{3} \wedge p_{1} \neq p_{4} \wedge p_{2} \neq p_{3} \wedge p_{2} \neq p_{4} \wedge p_{3} \neq p_{4} \\
& p_{1}=B_{1} \vee p_{1}=B_{2} \vee p_{1}=B_{3} \\
& p_{2}=B_{1} \vee p_{2}=B_{2} \vee p_{2}=B_{3} \\
& p_{3}=B_{1} \vee p_{3}=B_{2} \vee p_{3}=B_{3} \\
& p_{4}=B_{1} \vee p_{4}=B_{2} \vee p_{4}=B_{3} \\
& p_{1}=B_{1} \\
& p_{2}=B_{2}
\end{aligned}
$$

- B_{1}, B_{2}, B_{3} appear the same number of times, in the same number of clauses,...
- formula preserved by permutation of $B_{1}, B_{2}, B_{3}(\vee, \wedge$ commutative $)$
- $p_{1}=B_{1} \vee p_{1}=B_{2} \vee p_{1}=B_{3}$ holds, so let's say $p_{1}=B_{1}$
- resulting formula is still symmetric w.r.t. B_{2}, B_{3}. Repeat

Previous technique: weaknesses

Besides being sensitive to obfuscation:

- finding symmetries highly heuristic: guess, and then check symmetry
- symmetry breaking tailored to special case: not easily generalizable

But impressive improvements on QF_UF: worth trying to extend
Goal: being more general in finding and breaking symmetries

Outline

(1) Introduction
(2) Symmetry breaking: previous technique
(3) Finding symmetries with graph isomorphism tools
(4) Teaser
(5) Conclusion

Finding symmetries: graph isomorphism

Graph isomorphism problem

Finding non trivial renaming of nodes resulting in isomorphic graph

- graph isomorphism finding is in NP. P? NPC?
- efficient algorithms exist (time never an issue in our experiments)
- formulas: not exactly graphs, but can easily be translated
- btw, isomorphism finding for DAGs is not simpler
- good tools: saucy, bliss

Finding symmetries: from formulas to (acyclic) graphs

$$
p(f(a, b)) \vee p(f(b, a)) \vee p(g(a, b)) \vee p(g(b, a))
$$

- node colored by (HOL) sort
- node for every symbol
- node for each subterm
- special nodes "0" for lists of terms
- node for term linked to top symbol and list of subterms
- commutative symbols: directly link to subterms
- maximal sharing

Graph isomorphic iff formula symmetric

Finding symmetries: the tool

- parse formula
- simplify (several options)
- graph isomorphism tool: saucy, bliss
- output group generators
./SyMT -enable-simp smt-lib2/QF_UF/NEQ/NEQO04_size4.smt2
(p7 p9) (c12 c13)
(c_3 c_1)
(c_2 c_1)
(c_0 c_1)

SMT-LIB and symmetries

Category	\#Inst	\#Sym[P]	Avg[GS]	Time
AUFLIA	6480	6258	134.00	378.79
AUFLIRA	19917	16476	1.08	9.13
AUFNIRA	989	985	1.00	0.41
QF_AUFLIA	1140	78	1.00	0.72
QF_AX	551	22	1.00	0.37
QF_IDL	1749	756	12745.43	327.95
QF_LIA	5938	1200	104.55	486.19
QF_LRA	634	210	110.49	29.06
QF_NIA	530	169	5.92	3.92
QF_NRA	166	43	1.00	0.23
QF_RDL	204	24	0.00	10.13
QF_UF	6639	3638	44.00	34.58
QF_UFIDL	431	189	1.00	2.70
QF_UFLIA	564	198	0.00	0.45
UFNIA	1796	1070	47.08	543.26

Outline

(1) Introduction
C) Symmetry breaking: previous technique
(3) Finding symmetries with graph isomorphism tools
(4) Teaser
(5) Conclusion

Teaser: symmetry simplification

Issues with symmetries:

- graph isomorphism tools provide (small number of) generators
- maybe redundant even if...
- ...some kind of non redundancy property holds
- figuring out what generators mean can be difficult

Work in progress:

- simplify generators
- identify subgroups that are full permutation groups on some symbols
- computational group theory: Schreier-Sims (polynomial)
E.g.

```
./SyMT -enable-simp smt-lib2/QF_UF/NEQ/NEQO04_size4.smt2
        (p7 p9)(c12 c13)
        (c_3 c_1)
        (c_2 c_1)
        (c_0 c_1)
```


Teaser: symmetry simplification

Issues with symmetries:

- graph isomorphism tools provide (small number of) generators
- maybe redundant even if...
- ...some kind of non redundancy property holds
- figuring out what generators mean can be difficult

Work in progress:

- simplify generators
- identify subgroups that are full permutation groups on some symbols
- computational group theory: Schreier-Sims (polynomial)
E.g.

```
./SyMT -enable-simp smt-lib2/QF_UF/NEQ/NEQO04_size4.smt2
    (p7 p9)(c12 c13)
    [c_0 c_1 c_2 c_3]
```


Teaser: symmetry breaking

Symmetry breaking for propositional logic? Set of formulas:

$$
\psi_{i, \sigma}=\operatorname{def}\left(\bigwedge_{1 \leq i<i} p_{j} \equiv p_{j} \sigma\right) \Rightarrow\left(p_{i} \Rightarrow p_{i} \sigma\right) .
$$

assuming an order on propositional variables

- SBP on SAT: large, need advanced techniques
- working on recasting to SMT
- SMT symmetries are more "structural"
- hopefully easier to break efficiently (?)
- Symmetry breaking for SMT unifies several heuristics, e.g. diamonds

Outline

(1) Introduction
(2) Symmetry breaking: previous technique
(3) Finding symmetries with graph isomorphism tools
(4) Teaser
(5) Conclusion

Conclusion

- symmetry-based techniques sensitive to obfuscation
- users should break their symmetries themselves,
i.e. generate symmetry-free formulas
- SyMT, a tool to find out symmetries
- in the near future, SyMT will provide hints for symmetry breaking predicates
- open-source (w.i.p.). http://www.veriT-solver.org

