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Abstract

Energy neutral operation of WSNs can be achieved by exploiting the idle-
ness of the workload to bring the average power consumption of each node
below the harvesting power available. This paper proposes a combination of
state-of-the-art low-power design techniques to minimize the local and global
impact of the two main activities of each node: sampling and communica-
tion. Dynamic power management is adopted to exploit low-power modes
during idle periods, while asynchronous wake-up and prediction-based data
collection are used to opportunistically activate hardware components and
network nodes only when they are strictly required. Furthermore, the con-
cept of “model-based sensing” is introduced to push prediction-based data
collection techniques as close as possible to the sensing elements. The re-
sults achieved on representative real-world WSN case studies show that the
combined benefits of the design techniques adopted is more than linear,
providing an overall power reduction of more than 3 orders of magnitude.
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1. Introduction

Advances in energy harvesting (EH) have begun to shift the decade-
old research goal of the WSN community from energy efficiency to energy
autonomy. Nevertheless, building a self-sustaining EH-WSN remains a chal-
lenging task, especially in indoor environments where the harvested energy
can be several orders of magnitude less than the consumed energy. For ex-
ample, a typical, optimized application can spend milliwatts in sensing and
communication, while the typical harvesting range for an indoor harvester
remains on the order of microwatts [2, 3]. Therefore, work to reduce power
consumption is still required to achieve energy autonomy.

Dynamic power management (DPM) represents the cornerstone to any
power reduction approach. By targeting workload idleness and putting a
node’s micro-controller (MCU) into a low-power inactive mode, DPM saves
energy. In such a state, consumption drops from hundreds of milliwatts,
seen for high consuming activities such as radio transmission, to a fraction
of a microwatt. Clearly as nodes spend more time in this low-power state,
system lifetime improves. Nevertheless, the activities of a typical node, in-
cluding sampling, channel listening and receiving, and transmitting, require
the MCU to switch to high power modes, with each transition additionally
incurring a cost. Our work proposes a unique combination of hardware and
software techniques to reduce the frequency and duration of various high-
consumption tasks, not only increasing the time a node can spend in the
low-power state, but decreasing the number of transitions out of this state.
This results in huge energy savings without compromising the application
requirements.

We propose a novel technique for WSN applications with periodic data
collection, such as those where sensor data forms the input of a control loop,
thus requiring timely communication of the sensed values at a central con-
troller. Our proposed architecture employs (1) a wake-up receiver alongside
(2) a dedicated sensing peripheral that incorporates (3) a data reduction
software module. The first and third techniques aim to decrease the cost of
data collection by focusing on the use of the radio, as it represents one of
the most power hungry components on the node, while the second technique
achieves additional savings by reducing the cost of frequent sensor sampling.
The combination of these techniques results in very long idle periods with
rare occurrences of power hungry tasks such as radio transmissions and
receptions. Low-power modes, provided by multiple underlying hardware
components, are exploited by the dynamic power manager during the idle
periods to conserve energy.
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To illustrate the potential of these techniques, we briefly address each,
beginning with the communication. Traditional system architectures em-
ploy sophisticated duty cycling medium access control (MAC) techniques to
achieve significant reductions in consumption by putting the radio to sleep
for extended periods. Nevertheless, nodes still waste energy in two primary
ways. First, they must periodically wake up and listen to the channel in
case a node is attempting to transmit to it. If there is nothing to receive,
this energy spent listening is wasted, leading to idle listening. On the other
side, a sender with data to communicate must transmit until the receiver
wakes up, often leading to long transmission times among unsynchronized
nodes. Wake-up receivers are a novel hardware approach to eliminate these
two main sources of overhead. Specifically, they provide an ultra low power
receiver that is always on and listening to the channel, either the same chan-
nel used for communication or a dedicated, out-of-band channel. When a
packet is to be transmitted, a preamble is generated by the transmitter to
trigger the wake-up of the data radio on the receiving node. This eliminates
idle listening by turning on the main radio module only when there is a
packet to be received. Further, it reduces the transmission time by ensuring
that the receiver is ready to receive immediately after transmission of the
preamble, thus avoiding the repeated transmissions typical of duty cycling
protocols.

While exploiting a wake-up receiver leads to significant lifetime gains in
many scenarios, applications that collect data at high frequency still incur
significant costs to transmit the raw data. To ameliorate these costs, several
techniques have been proposed to reduce the amount of data sent without
compromising the application requirements. In the technique we consider,
each node calculates a model for its data and communicates this model to
the sink. The sink then uses these models to predict the data samples at
each node. As long as the real samples closely match the model, no data
is communicated, however as soon as the real data deviates significantly
from the data estimated by the model, a node generates a new model and
transmits it to the sink. Such approaches have the potential to eliminate
90 to 99% of the transmissions [4], depending on the type of data being
sampled and the sophistication of the model.

Interestingly, the combination of a data reduction technique and the
wake-up receiver reduces the radio cost to a point where periodic sensor
sampling, normally considered a low-consumption task, actually accounts
for a significant portion of the energy consumption. Therefore, to make the
sampling cheaper, we introduce a novel hardware-software based technique
called Model-based Sensing (MBS). MBS delegates the tasks of periodi-
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cally sampling the sensors and the running data reduction algorithm to a
dedicated ultra-low power hardware peripheral. This peripheral operates
without involving the power hungry primary MCU as long as the data re-
duction technique is successful in suppressing the sensed data. Only rarely,
when there is a need to transmit data, is the main MCU turned on to trans-
mit the data.

By combining these techniques, we increase the length of the idle periods
of the MCU and the radio transceiver, which each offer multiple low-power
modes to save energy. Additionally, ancillary components such as flash mem-
ories and real-time clocks, can be opportunistically turned on and off to save
power. In general, the low-power modes and component states must be care-
fully managed to meet the workload and minimize consumption. This paper
shows the potential savings of this combination of techniques in concrete,
real-world case studies representative of many periodic data collection ap-
plications. The resulting system consumes only a few microwatts, resulting
in a system lifetime improvement of three orders of magnitude, and reaching
the point where indoor energy harvesters can sustain node operation.

In summary, the contributions of this paper include:

• a system architecture that uniquely combines three software and hard-
ware techniques to drastically reduce node workload and offload the
frequent and expensive activities from the main MCU. The MBS mod-
ule is presented for the first time in this paper. Our combination re-
sults in ultra-lightweight applications with long idle periods between
consecutive activities.

• a case-study based evaluation of the savings achievable when the low-
power modes of the radio, MCU and various peripherals exploit the
increased idleness achieved by our architecture. To fully examine the
contributions of each technique, we evaluate them both individually
as well as in various combinations.

The rest of the paper is organized as follows: Section 2 provides an
overview of related work on data reduction techniques and ultra low-power
WSNs; Section 3 describes the overall system architecture; Section 4 intro-
duces the design principles of model-based sensing; Section 5 and Section 6
describe the experimental setup and present the results respectively; Section
7 concludes the work.
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2. Background and Related Work

This section offers background on the techniques used throughout this
paper to effectively exploit DPM: prediction-based data collection, wake-up
receivers and ultra low-power sensor nodes.

2.1. Prediction-based data collection

As a first step toward reducing consumption, we turn to techniques that
reduce the data that must be transmitted. Many such techniques exist such
as data compression, in-network data processing and data aggregation [5],
but we focus on prediction-based data collection due to its simplicity and
demonstrated effectiveness on scenarios with periodic data collection, e.g.,
where a WSN serves as a component in a control loop.

In prediction-based data collection, the original application-required sam-
pling period is maintained, but the total amount of data transmitted is re-
duced [5] by generating a model for the sensed data. This model is used at
the sink to approximate the sampled data points. With each new sample,
the node verifies that it falls within allowable error tolerances. If so, no
action is taken, but if not, a new model is generated and transmitted to the
sink. If the model closely approximates the data trend, the network commu-
nication is significantly reduced, up to 99% in some cases [6, 7, 8]. Various
types of models have been studied. Probabilistic models [9, 10] approxi-
mate data with a user-specified confidence, but special data characteristics
must be encoded by domain experts. Alternate techniques employ linear
regression [11], autoregressive models [12] and Kalman filters [13], but with
sizeable memory and computational requirements, making them difficult to
implement on resource-limited motes. A simpler, linear approach [6], de-
tailed in Section 3.1, was recently proposed by some of the authors of this
paper, and is adopted for the case study here.

2.2. Wake-up Receiver

Wake-up receivers are a viable solution to enable low-power, asynchronous
communication, essentially by triggering the activation of the primary ra-
dio [14]. Several wake-up solutions have recently been developed [15, 16, 17,
18, 19, 20], each optimizing different parameters such as working power, sen-
sitivity, distance range, latency, and operating frequency. These solutions
use the radio channel to convey triggering signals, but alternative proposals
use out-of-band signals such as ultrasound. Notably, this paper evaluates
two wake-up modules for the VirtualSense platform i) an ultrasonic wake-up
receiver recently developed by some of the authors of this paper [21] and ii) a

5



radio wake-up receiver presented in [19] . Both outperforms state-of-the-art
radio wake-up receivers with a sub-µA quiescent current consumption.

Recent researches have shown the potential for asynchronous wake-up
schemes in some application scenarios [22, 1]. Specifically, studies [23, 24]
have shown that, in comparison to duty cycling protocols, wake-up receivers
offer longer system lifetimes, lower latency, and better reliability in multiple
application domains. These studies note that wake-up receivers are partic-
ularly effective for applications with ultra-low traffic, as they avoid the idle
listening incurred at routing nodes to periodically check for incoming pack-
ets. This paper builds on this observation, specifically showing how tradi-
tional applications with moderate data rates can be converted into ultra-low
traffic applications with prediction-based data collection, thus enhancing the
effectiveness of wake-up receivers and DPM.

2.3. Ultra-low Power Platforms

Careful design of embedded wireless hardware platforms is key to energy
efficient WSNs. Over the last 15 years, many efforts have been devoted to
devise novel ultra-low power MCUs and radio transceivers. First generation
WSN platforms included Rene [25], Mica [26] and Telos [27]. Afterwards,
the design of embedded architectures for sensor nodes has mainly relied
on 16-bit MCUs and IEEE 802.15.4 compliant transceivers. Recent trends
show a shift towards 32-bit platforms that meet strict WSN energy require-
ments [28]. All of these platforms come with the ability to opportunistically
turn off hardware components in periods of idleness. As the runtime power
consumption depends on various dynamic power management features avail-
able within these motes, this paper focuses on one single mote named Vir-
tualSense, a platform designed by some of the authors of this paper. The
next section focuses on the various elements VirtualSense offers for dynamic
power management.

3. System Architecture

The primary contributions of this paper are first, a novel combination of
technologies from hardware to software to achieve fully energy autonomous
systems and second, the concrete, case-study based evaluation of multi-
ple configurations of these technologies. Figure 1 offers a very high level
overview of the configurable components we consider, dividing them be-
tween software and hardware, then further dividing the hardware among
those belonging to the VirtualSense [29] platform (the MCU and the data
transceiver), the wake-up receiver, the model based sensing (MBS) element
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Figure 1: High level system architecture showing the primary configurable components
and the configuration options available for each of them.

(MBS), and the energy harvester. This section offers a high level descrip-
tion of most of these components, emphasizing their configuration options.
As MBS itself is a novel contribution of this paper, we discuss it separately
in Section 4.

3.1. Derivative-Based Prediction (DBP)

To reduce the amount of data transmitted by each node, we developed
an easily implementable data prediction technique that captures the data
trends. With DBP, first described in [6], we adopted a linear model com-
puted from m data samples, the first and last l points we refer to as edge
points. The linear model is calculated as the slope of the line connecting
the average of the first l edge points with the average of the last l edge
points. This computation resembles the calculation of the derivative, hence
the name Derivative-Based Prediction.

On initialization, m points are collected, then the first model is generated
and sent to the sink. Subsequently, each sensor sample is checked against
the value the model predicts. If the reading is within a given tolerance, no
action is taken as the sink will also use the model to approximate the sensor
sample. However, if the application tolerances are exceeded, a new model is
generated and transmitted to the sink.

To offer a brief example, consider an outdoor light sensor. At sunrise the
linear, DBP model will be an upward sloping line. At some point, however,
the light levels will cease to increase and the upward sloping model will
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be replaced with a flatter model, corresponding to the daytime light levels.
While this explanation is over-simplified, it offers the intuition of DBP.

It is worth mentioning that we have applied DBP to several real data sets
ranging from soil temperature to indoor temperature and light values [4].
In all cases, a reasonably tuned DBP produces data reduction rates above
89% and in most cases above 98%. These savings are sufficient to exploit
the combination of technologies explored in this paper.

DBP, or any data reduction approach, can either be run on the main
MCU or on pushed closer to the hardware and run as part of MBS sensing
peripheral. We discuss the latter case in Section 4 and highlight its benefits
in Section 6.

3.2. VirtualSense

VirtualSense [29] is an open-hardware ultra low-power sensor node fea-
turing a Java-compatible virtual runtime environment. The software stack
of VirtualSense is based on the Contiki operating system (OS) [30] and the
Darjeeling Virtual Machine (VM) [31], suitably modified to make it possible
for a Java programmer to fully exploit the low-power states of the underlying
MCU, a MSP430F5418a as well as the data transceiver, a CC2520.

3.2.1. Microcontroller Unit

VirtualSense features four categories of power states: active, standby ,
sleep, and hibernation. In standby the CPU is not powered, but the clock
system is running and the unit is able to wake itself by means of timer
interrupts. In sleep both the CPU and the clock system are turned off and
the unit is woken up only by an external interrupt. In hibernation even the
memory system is switched off and there is no data retention requiring a
complete reboot of the OS at wake-up, together with a restore of the VM
heap.

Power consumption varies significantly across different states of Virtu-
alSense. In the active mode, the average power consumption is approxi-
mately 13mW when processing and 66mW for transmitting, while the con-
sumption reduces to 14.67µW in standby , 1.32µW in sleep, and 0.36µW in
hibernation. We also note that the time to transition from one state to
another is non-negligible. Specifically, the transition to active is 25ms from
standby and sleep, and 500ms from hibernation. WSN applications that do
not need to maintain execution state can also use a memory-less hibernation
mode (ML Hibernation), which does not preserve the VM state, reducing
the wake-up time to 27ms. In summary, with effective DPM, power savings
of several orders of magnitude can be achieved.
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Table 1: Main parameters of ultrasonic and radio wake-up modules.
WuR type US Radio

Radiation pattern 55◦at -6dB Omnidirectional

Frequency 40KHz 868MHz

Range 15m 20m

Tx power Standby 40nW 690nW

Tx power Active 37mW 78mW

Rx power Listening 1640nW 462nW

Rx power Decoding 14µW 49µW

Throughput 20bps 10Kbps

3.2.2. Data Transceiver

VirtualSense provides several low-power communication features by ex-
ploiting the inactive modes (LPM1 and LPM2) of the CC2520 radio transceiver,
as well as the hardware frame filtering (FF) capabilities that prevent the re-
ception of non-intended packets.

The CC2520 is controlled by the main MCU through the serial peripheral
interface bus (SPI) and six general purpose I/O pins (GPIOs). LPM2 is the
lowest power consumption mode in which the digital voltage regulator is
turned off, no clocks are running, no data is retained, and all analog modules
are in the power down state. In this state, power consumption is around
13.5µW, but the embedded controller needs to be rebooted at wake-up.
In LPM1, the digital voltage regulator is on, but no clocks are running. In
this state, power consumption is around 3mW, while all data/configurations
are retained and the analog modules can be controlled by the main MCU.
During transmission, the power consumption of the entire transceiver, due
to the RF module plus the embedded microcontroller, ranges from 48.6mW
(at -18dBm output power) to 100.8mW (at +5dBm output power), while in
standard receive mode the power consumption is 69.9mW.

The frame filtering function (FF) rejects non-intended frames not match-
ing the local address. With FF enabled, the transceiver can be switched
immediately to the LPM2 in case of a non-intended frame without a need
to process the rest of the frame and wake up the MCU [32].

3.3. Wake-up Receivers

Table 1 reports the primary features of the two wake-up receivers(WuRs)
used in this study, characterized by their use of ultrasound or radio waves.
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Table 2: Amount of harvestable energy available in indoor environments. [33, 34]

Harvester Power density

Photovoltaic less than 10 µwatt/cm2

Electromagnetic 1-4 µwatt/cm3

Vibration (electrostatic) 3.8 µwatt/cm2

Radio Frequency 0.1 µwatt/cm2

Acoustic noise 0.003-0.096 µwatt/cm3

3.3.1. Ultrasonic WuR

The ultrasonic WuR considered in this work consists of a transmitter
and of a receiver based on piezoelectric transducers working at 40KHz with
a 2KHz bandwidth [21]. Nodes equipped with this WuR are triggered upon
detection of an ultrasonic carrier signal. Optional selective triggering can
be obtained by encoding 8 bit addresses through On-Off-Key (OOK) mod-
ulation of the carrier.

The receiver consumes 1640nW during listening periods and 14µW when
decoding the preamble or the address. Power consumption by the trans-
mitter is 40nW in standby and 37mW in active mode used to encode and
transmit the wake-up signal. These parameters are compatible with a 15m
operating range. The overall throughput of the system amounts to 20bps.
Wake-up triggering times range from 50ms in non-addressing mode to 450ms
for 8-bit addressing mode. Ultrasound transducers are notably directional
in that the main radiation lobe is 55◦ at -6dB.

3.3.2. Radio WuR

The radio wake-up solution we adopted is based on a recently developed
ultra low power radio WuR [19]. This module works at 868MHz within a
20m range; it is equipped with a high sensitivity receiver (-42dBm) with a
power consumption of only 462nW (while listening) and of 49µW (during
decoding). The power attributable to the transmitter is only 690nW in
standby and 78mW during transmission. Similar to the ultrasonic WuR,
this radio WuR features the capability to selectively address nodes, thanks
to a mechanism based on OOK modulation. Wake-up times range from
130µs without addressing to 0.8ms for selective triggering with a 1 byte
address (more than two orders of magnitude lower than that of the ultrasonic
WuR) and the overall throughput is 10Kbps. The radiation pattern of the
associated antenna is omnidirectional.
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3.4. Energy Harvester

In this paper, our objective is to reduce node consumption to a rate
that can be supported in a typical indoor environment with state of the
art energy harvesting techniques. Table 2 outlines five such technologies,
indicating the amount of harvestable energy each provides. These values
are orders of magnitude lower than those in typical outdoor environments.

The WSNs deployed in the both case studies considered in this paper
are exposed to low-intensity artificial light from lamps. This light can be
readily converted by a photovoltaic cell into electrical energy. Therefore,
photovoltaic cells optimized for low illuminance are an ideal choice. In this
paper, we consider the Panasonic AM-1816 [35], a palm-sized cell designed
to support small electronics indoors, even under low-intensity fluorescent
lights.

4. Model-based Sensing

Traditionally, WSN nodes are designed to periodically sense the environ-
ment and then immediately send this data to a sink node. However, several
applications interrupt this procedure, supressing the transmission of many
sensed data, either through prediction-based data collection techniques as
briefly discussed in Section 2.1 or transmitting only significant events such as
a detected forest fire, volcanic eruption, or landslide. The commonality be-
tween prediction-based data collection and event-driven applications is that
both sense the data periodically, then process it to determine whether or not
to send any data. When effective, these techniques avoid transmission in a
large majority of the cases, nevertheless, the mote’s power hungry MCU
must still be woken up to sense and process the sample. Turning on the
MCU frequently incurs a significant cost for both switching to and staying
in a high power mode. Our observations show that this sensing cost ac-
counts for the most significant energy consumption once the communication
costs are drastically reduced with a data reduction technique and a wake-up
radio. To reduce this sensing cost, we introduce a novel hardware-software
technique called model-based sensing (MBS), which moves the sensing and
processing tasks from relatively power hungry MCU to a dedicated hardware
peripheral.

Figure 1 shows our approach with the MBS module containing sensors
and and ultra-low power microcontroller on the hardware side and a data
processing logic on the software side. This software can either implement the
functionality of an event-driven application or a data reduction technique
such as prediction-based data collection. In this paper we focus on the
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latter, noting that MBS proposes moving the data modeling software from
the primary MCU (labeled “application” in the figure) into the MBS module,
allowing sampling and processing without requiring the expensive, primary
MCU. Only when samples fall outside the model must the MCU be turned
on, together with the primary radio transceiver, for transmission of a new
model to the sink. We select the microcontroller for MBS module such
that it consumes orders of magnitude less energy than main MCU, enabling
significant energy savings.

Implementation Details. In this paper, we use Derivative-based Predic-
tion [6] as the basis for MBS. The model is piece-wise linear and is computed
based on m samples. Hence, each sample needs to be digitized, stored in
memory, and processed in order to decide whether a new model must be
transmitted or not. Processing entails integer sums, divisions, and compar-
isons that can be performed by an off-the-shelf ultra low power peripheral
interface controller (PIC). The reference architecture proposed in this paper
is based on Microchip PIC16F1825, which draws only 36nW in sleep mode
with data retention and 10.8µW while running at 32KHz. It accommodates
12 16-bit ADC channels and 1024 bytes of RAM, which can hold up to
512 ADC samples. We chose this PIC because its power consumption in
processing and sleep modes is three orders of magnitude less than that of
the MCU used in our VirtualSense mote.

Although, in principle, pure hardware implementations could be envi-
sioned to minimize the number of components to be embedded into the
sensing layer, the cost and the power consumption of state-of-the-art PICs
do not motivate the development of application-specific integrated circuits.

5. Experimental Setup

Our unique combination of the technologies presented in Section 3 and
Section 4 exploits the lowest consumption modes of the VirtualSense plat-
form for as much time as possible, moving to a low-power MCU state be-
tween activities such as transmissions and receptions. Using DBP decreases
the costs in multiple ways. Consider that in any system, a node transmits
its own data, forwards data from other nodes, and unnecessarily overhears
packets destined to other nodes. Each of these events requires the node
and the primary data radio to be switched to a high power consumption
mode. DBP reduces the total traffic in the network, thus reducing the fre-
quency of all these events, and consequently increasing the time the node
can remain in the lowest power mode. However, with DBP running as the
main application on the mode, the main MCU still needs to process each
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periodic sample, resulting in relatively high sampling costs. We have solved
this problem by delegating the tasks of sampling and running DBP to a
specialized ultra-low power sensing peripheral called MBS, obviating the
need for expensive and frequent wake-ups of main MCU. Moreover, over-
heads related to idle listening and message overhearing are further reduced
by using a wake-up receiver and the hardware frame filtering capabilities of
the radio transceiver. Our multifaceted hardware software approach intends
to radically reduce the power consumption of the WSNs.

The results presented in the next section come from a series of simula-
tions with DBP, VirtualSense, wake-up receivers and MBS, performed with
actual data collected from two real-world WSNs deployed in a road tunnel
and an office building. The estimated power consumption is based on real,
empirical measurements of power consumed by VirtualSense and the wake-
up receivers in different power modes. This section offers details on both
case studies, the power measurements and concludes with an estimation of
energy harvested from photovoltaic cells, as our final goal is an energetically
sustainable system.

5.1. Case Studies

The two case studies described in this section correspond to a real-world
deployment and a testbed, representative of sparse and dense WSNs respec-
tively. Both applications require periodic data samples to be shared with a
central control system.

5.1.1. tunnel: Adaptive Lighting in Road Tunnels

Our first case study is based on a pilot deployment in a real road tunnel
in Trento, Italy [36]. In this 260 m tunnel, a WSN of 40 nodes is deployed
to periodically measure the light levels. The nodes close to the entrance
are exposed to sunlight, while nodes deep in the tunnel only detect the
artificial light from the lighting system. In all cases, the light levels detected
by the sensors every 30 s are transmitted over a 15-hop network, shown in
Figure 2, to reach a gateway at the entrance of the tunnel. The values are
then used by a control system to gradually adjust the intensity of the lamps
throughout the tunnel to meet the legislated light levels. The control system
was designed in collaboration with lighting engineers to tolerate a limited
amount of data loss and to accommodate some degree of error in the quality
of the sensed values.

In this paper, we evaluate the system’s power consumption with multiple
hardware and software configurations. While the next section addresses
the hardware configurations, here we consider the application layer, as it is
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Figure 2: Layout of nodes in the tunnel and a sample data collection tree with a depth of
15 hops.

affected by the case study itself. Specifically, we must consider the amount
of data reported by each node with and without the DBP data prediction
algorithm. For this, we used actual data traces collected from the tunnel
over a 47-day winter period, a total of 5, 414, 400 samples. Without DBP,
we assume each sample is transmitted by each node immediately after being
sampled. With DBP, instead, each node transmits only when the model
changes. When running DBP only on the MBS module, we assume that
the main MCU and data transceiver would not be turned on unless there
is a model change. For the purposes of this study, we configured DBP to
allow the predicted data values to deviate from the actual light values by
at most 5% or 15 lux. Further, at most two consecutive samples can fall
outside this error bound before a new model generation is triggered. These
settings allow DBP to reduce the total sent traffic by 99.74% w.r.t. periodic
reporting [4].

The data collection topology, shown in Figure 2, is generated using an
implementation of unit disk graph model in Cooja simulator [37]. The com-
munication range is set to 15m, the minimum range of the two WuRs in
Table 1, while the interference range is set to double of the communica-
tion range. This topology along with the total network traffic is fed to the
power consumption model described in Section 5.2 to estimate the power
consumption.

5.1.2. intel: Indoor Environmental Monitoring

Our second study is based on arguably one of the first publicly available
datasets collected from a WSN, specifically an indoor, 54 node Mica2Dot
deployment inside the Intel Berkeley Research Lab [38, 39]. The laboratory
is approximately 40 × 31 m2. The dataset consists of 36 days worth of
environmental data sampled every 31 s including light, temperature and
humidity, resulting in 2.3 million values for each sensor type.

As with the tunnel, this data displays daily cycles, with light showing
the most irregularities as the humans in the environment directly affected
it. We configured DBP such that the predicted data values can deviate
from the actual values by at most 5% or 15 lux for light, 1% for humidity

14



1

2
3

4

5 6

7

8

9

10

11

12

13 14

15
16

17
18

19

20
21

22

23

2425
26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

4142

43
44

45

46
47

48

49

50

51
52 53

54

Gateway

Figure 3: Layout of nodes in the Intel-lab testbed together with the data collection tree.
For the sake of readability, direct connections between nodes not involved on multi-hop
paths are not represented.

and 0.5 degree Celsius for temperature. This configuration reduced the
periodic transmissions by 97.58% for light, 99.50% for humidity and 99.60%
for temperature.

To model the real-world channel and interference conditions experienced
by the main data transceiver, we use publicly available aggregate connec-
tivity data [39]. Based on the provided link qualities, we construct a 4-hop
collection tree, as shown in Figure 3. Given these link qualities and the total
amount of traffic sent and forwarded over the collection tree, number of link
level transmissions has been estimated and fed to our power consumption
model described next.

5.2. Power Models and Simulations

Power simulations were obtained starting from the functional state di-
agram reported in Figure 4, which describes the behavior of a WSN node
capable of exploiting idle periods during its workload in order to save power.

The state diagram is represented in terms of states and transitions. In
particular, the Wait state represents a family of inactive modes fully acces-
sible and exploitable by the dynamic power manager. In Wait state, the
node reacts to three types of events: i) reception of an intended packet; ii)
overhearing of an unintended packet; iii) wake up from timed interrupt for
periodic tasks (i.e., sampling). The Process state is representative of activ-
ities such as sampling a given physical quantity and evaluating the need to
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Figure 4: Reference functional state diagram.

transmit a sample according to the prediction strategy, or relaying an in-
coming packet toward destination (i.e the sink). When the processing ends
(EoP), the node transitions back to the Idle state.

The functional state diagram allows us to derive the following five oper-
ating conditions accounting for node power consumption:

1. waiting;

2. hearing an unintended packet;

3. receiving and routing a packet;

4. waking up autonomously to sample then transmit;

5. waking up autonomously to sample but not transmit thanks to DBP.

The power consumption model was used to accurately estimate the con-
sumption based on the runtime behavior of VirtualSense nodes [40]. In
particular, we computed the average power consumption as a weighted av-
erage, where weights are represented by the actual occurrence rates of each
operating condition as derived from real-world traffic data (for each of the
two case studies). Indeed, the datasets obtained from the case studies were
fed to the simulator, which captures the behavior and power consumption of
each node, taking into account all the configuration options of the hardware
and software components involved, as shown in Figure 1. In details, the
simulator allows us to:

• select the low-power mode of the MCU;

• select the low-power modes of the data radio transceiver (with and
without hardware frame filtering);

• choose between the ultrasonic or radio wake-up modules;

• activate either software DBP, or MBS.

When the wake-up receiver is not in use, we assume the primary radio runs
the standard ContikiMAC protocol with a 100ms wake-up interval.
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The power consumption values of the MCU [40], the radio transceiver
[40], the ultrasonic [21] and the radio wake-up [19] modules, and the new
MBS module were accurately characterized by means of real-world measure-
ments.

It is worth noticing that the simulator takes traffic statistics from real
intel testbed or from tunnel simulation in Cooja [37]. Hence, the radio
and acoustic channels are not modeled within the simulator. Nevertheless,
the effects of the data radio channel are inherently represented by the input
data according to the models or experimental conditions used to generate
them, as detailed in Section 5.1.

As for the radio/acoustic wake-up communication, all the experiments
were conducted within the nominal operating conditions of the devices (in
terms of range and orientation), where the effects of non-idealities are neg-
ligible. Within these conditions, the triggering reliability is near-perfect.
Pushing the wake-up technologies beyond their nominal conditions would
require a thorough analysis of the effects of-false positives (false-negative)
wake-up events on power consumption (data packet loss). Such analysis
goes beyond the scope of this work.

5.3. Estimation of Harvestable Energy

To estimate the harvestable energy for our nodes, we use the actual
light values collected in our case studies. These light values are already
expressed in lux for intel. The raw sensor values from tunnel sensors is
also converted to lux, thanks to an accurate calibration process described in
[36]. For estimating the harvestable energy, we assume that the same sensed
illuminance is produced from a fluorescent light source and is incident on on a
Panasonic AM-1816, a palm-sized photovoltaic cell, which then is attached
to a harvester described in [41] with a charging efficiency of 79%. Our
model for harvestable energy is then derived by a piecewise linear model
using empirical measurements available for the photovolatic cell in [35] and
the harvester in [41].

6. System Evaluation

Our goal is to evaluate system power consumption with multiple different
configurations of the hardware and software components of our architecture,
as outlined in Figure 1. This section reports the achievable savings in both
case studies, first discussing those enabled by various combinations of these
components, then highlighting those achieved by the two WuRs and the
novel MBS module.
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6.1. Energy Savings

For our case studies, Tables 3 and 4 show 23 different configurations,
each of which corresponds to a specific hardware states. The first row shows
a standard node configuration that uses the standby mode of MCU and
the LPM1 mode of the data transceiver with no WuR. We consider this
hardware configuration, in combination with a software layer that does not
use the DBP prediction scheme as the baseline. Power consumption values,
shown in µW, are computed as averages over all the nodes of the WSN being
studied.

When the data is sent periodically, without DBP or MBS, energy ef-
ficiency is achieved by using a suitable low power hardware configuration.
We observed a lifetime improvement of 19x and 92x (ID 11) for tunnel and
intel respectively. The larger improvement for intel compared to tun-
nel is due to the higher node density of the former, which causes excessive
overhearing and unnecessary triggering of WuRs in most hardware configu-
rations, resulting in higher baseline consumption. The FF capabilities and
addressing mode of the WuRs (Radioa and USa) are,therefore, more effec-
tive in mitigating this effect for the more dense intel deployment, enabling
larger savings.

In all configurations, adding DBP reduces the network traffic, reduc-
ing power consumption. Additionally, as expected, increasing the use of
low-power modes also reduces consumption. Without the WuRs (IDs 1-5),
power consumption reductions are modest, approximately eight times for
both case-studies, even when considering a configuration that exploits the
sleep mode of the MCU and avoids unnecessary overhearing with the data
radio (FF).

Intuitively, the addition of the WuR should have a significant impact by
reducing idle listening in the tunnel and intel applications where data is
generated roughly only twice per minute. However, the observed lifetime
improvement varies significantly across the wake-up technologies. For ex-
ample, in tunnel, the improvement is 19x for Radio (ID 11) compared to
only 3.3x for US (ID 7). A better performance of Radio WuR is due to its
three orders of magnitude better throughput and therefore a lower wake-up
triggering cost w.r.t. the US WuR.

Instead, combining the radio WuR with the extremely low data rate of
DBP (ID 11, DBP) results in a significant 463 times improvement, a result
that is much larger than the improvements attainable by each technique in
isolation. This remarkable result is a concrete demonstration of the benefits
of eliminating idle listening with the very low transmission rates achieved
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with DBP. Additionally, as the node no longer needs to forward frequent
data packets on behalf of other nodes, it can spend more time between
samples in the low power mode of the MCU. Without MBS, the sampling
interval (30 s for tunnel and 31 s for intel) defines the maximum time a
MCU can stay in a low power mode. MBS, instead, gets rid of this limitation
by offloading the sampling task from main MCU, enabling even longer idle
periods for the MCU. Maximally, with MBS, the MCU can stay in low
power mode between two consecutive model updates. To offer an example,
if a tunnel node does not observe significant variations in light throughout
the night, a model will not change and the MCU can likely stay in a low
power mode for this whole duration. These very long periods of idleness
result in three orders of magnitude lifetime improvement. Specifically, the
addition of MBS improves the lifetime from 463x to 2052x for tunnel
(ID 11).

Missing entries in Tables 3 and 4 indicate infeasible hardware configu-
ration. For example, the hibernation mode of the MCU has a shut-down
and a wake-up time the cannot be accommodated with the sampling rates
of the target applications when prediction-based data collection is not ex-
ploited to reduce the traffic. Similarly, memory-less hibernation modes are
not compatible with the software implementation of DBP, which requires
data retention. It is worth noting that all configurations become feasible
with MBS, which achieves benefits by reducing the traffic, reducing the
number of MCU state transitions, and providing an auxiliary memory in
the sensing layer that enables ML hibernation.

In summary, these numerical results bolster our argument that the in-
dividual techniques of prediction-based data collection, DPM, MBS, and
wake-up receivers, while individually capable of achieving improvements,
are even more powerful when combined into a single system. The synergis-
tic effect results in more than 3 orders of magnitude improvement in lifetime
in both case studies presented here. The performance of the two WuRs and
MBS under different hardware-software configurations is discussed in more
detail in the following subsections.

6.2. Comparison of Wake-up Receivers

System performance is sensitive to the WuRs and the network traffic.
As highlighted by Table 1, the radio WuR offers three orders of magnitude
higher throughput than the US WuR and therefore can send and receive
the triggering signal more quickly, saving energy. For this reason, the radio
WuR always achieves higher energy efficiency than the US WuR.
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Table 3: System-wide energy savings in the tunnel case study. The gray cells indicate the
baseline for calculating the power consumption improvement ratio of all other configura-
tions. (Hib.=Hibernation)

ID Hardware Configuration no-DBP DBP MBS
MCU Data

Transceiver
Wake-

Up
[µW] Ra-

tio
[µW] Ra-

tio
[µW] Ratio

1 Standby LPM1 none 5989 1.0x 3460 1.7x 3453 1.7x
2 Standby LPM2 none 3532 1.7x 759 7.9x 749 8.0x
3 Standby LPM2+FF none 2988 2.0x 759 7.9x 749 8.0x
4 Sleep LPM2 none 3520 1.7x 746 8.0x 736 8.1x
5 Sleep LPM2+FF none 2976 2.0x 745 8.0x 736 8.1x
6 Sleep LPM2 US 2346 2.6x 15.4 388x 5.4 1102x
7 Sleep LPM2+FF US 1795 3.3x 15.1 397x 5.1 1175x
8 Sleep LPM2 USa - - 15.7 383x 5.7 1060x
9 Sleep LPM2 Radio 1696 3.5x 13.8 435x 3.8 1591x
10 Sleep LPM2+FF Radio 1145 5.2x 13.4 446x 3.4 1748x
11 Sleep LPM2 Radioa 318 19x 12.9 463x 2.9 2052x
12 Hib. LPM2 US - - 1664 3.6x 57.3 104x
13 Hib. LPM2+FF US - - 1663 3.6x 57.0 105x
14 Hib. LPM2 USa - - 1617 3.7x 10.3 582x
15 Hib. LPM2 Radio - - 1663 3.6x 56.9 105x
16 Hib. LPM2+FF Radio - - 1663 3.6x 56.5 106x
17 Hib. LPM2 Radioa 10042 0.6x 1617 3.7x 8.9 676x
18 ML Hib. LPM2 US 2424 2.5x - - 4.5 1324x
19 ML Hib. LPM2+FF US 1873 3.2x - - 4.2 1431x
20 ML Hib. LPM2 USa - - - - 4.7 1275x
21 ML Hib. LPM2 Radio 1775 3.4x - - 4.1 1444x
22 ML Hib. LPM2+FF Radio 1224 4.9x - - 3.8 1572x
23 ML Hib. LPM2 Radioa 328 18x - - 3.3 1837x

Table 5 reports the percentage reduction in power consumption because
of using the most efficient configuration of the radio WuR over that of the
US WuR. For the denser intel deployment, the addressing modes of the
both WuRs (USa and Radioa) are more efficient than the broadcast mode
(US and Radio), which unnecessarily wakes up many neighbors.

Compared to USa (ID 8, DBP), Radioa (ID 11, DBP) reduces the av-
erage node power consumption by 54.38% for light, 26.01% for humidity
and 22.66% for temperature, as shown in Table 5. The larger improvements
represent the datasets generating more DBP models. For example, intel
light is the most difficult dataset to be predicted by DBP, generating 152
models per hour compared to only 32 and 26 packets per hour for humid-
ity and temperature. Therefore, relatively larger number of DBP models
benefit from the efficient radio wake-up triggering, resulting in more power
savings compared to the humidity and the temperature datasets. A better
energy efficiency of USa than Radioa is also clearly reflected on the lifetime
improvement observed for the humidity and temperature datasets.
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Table 4: System-wide energy savings in the Intel-lab case study (light). The gray cells
indicate the baseline for calculating the power consumption improvement ratio of all other
configurations. (Hib.=Hibernation)

ID Hardware Configuration no-DBP DBP MBS
MCU Data

Transceiver
Wake-

Up
[µW] Ra-

tio
[µW] Ra-

tio
[µW] Ratio

1 Standby LPM1 none 6323 1.0x 3529 1.8x 3522 1.8x
2 Standby LPM2 none 3900 1.6x 834 7.6x 825 7.7x
3 Standby LPM2+FF none 2996 2.1x 812 7.8x 803 7.9x
4 Sleep LPM2 none 3888 1.6x 821 7.7x 812 7.8x
5 Sleep LPM2+FF none 2984 2.1x 799 7.9x 790 8.0x
6 Sleep LPM2 US 2530 2.5x 75.1 84x 65.6 96x
7 Sleep LPM2+FF US 1615 3.9x 52.7 120x 43.3 146x
8 Sleep LPM2 USa - - 30.3 208x 20.9 303x
9 Sleep LPM2 Radio 2368 2.7x 69.9 91x 60.4 105x
10 Sleep LPM2+FF Radio 1453 4.3x 47.6 133x 38.1 166x
11 Sleep LPM2 Radioa 68.7 92x 13.8 457x 4.4 1442x
12 Hib. LPM2 US - - 4755 1.3x 3234 2.0x
13 Hib. LPM2+FF US - - 4733 1.3x 3212 2.0x
14 Hib. LPM2 USa - - 1600 4.0x 79.1 80x
15 Hib. LPM2 Radio - - 4752 1.3x 3230 2.0x
16 Hib. LPM2+FF Radio - - 4729 1.3x 3208 2.0x
17 Hib. LPM2 Radioa - - 1585 4.0x 63.8 99x
18 ML Hib. LPM2 US 2648 2.4x - - 67.5 94x
19 ML Hib. LPM2+FF US 1733 3.6x - - 45.4 140x
20 ML Hib. LPM2 USa - - - - 20.0 316x
21 ML Hib. LPM2 Radio 2487 2.5x - - 63.6 99x
22 ML Hib. LPM2+FF Radio 1572 4.0x - - 41.3 153x
23 ML Hib. LPM2 Radioa 71.1 89x - - 4.7 1325x

For tunnel, the improvement achieved by the radio WuR (ID 11, DBP)
over US WuR (ID 7, DBP) is significant (14.42%) but less than the one for
the intel dataset. The efficiency advantage of the radio WuR over the
US WuR is limited by two factors. First, DBP suppresses 99.74% periodic
transmissions, generating only 13 packets per hour in the tunnel network
on average. Second, most traffic comes from the nodes exposed to direct
sunlight at the entrance of tunnel (e.g., 1-3 and 21-23). Because the gateway
is deployed at the entrance, the direct links between these nodes and the
sink can exploit the efficient WuRs over only a single hop in most cases and
that also for ultra-low traffic. Both factors limit the advantage of the radio

Table 5: Benefits of using the the radio WuR over the US WuR.
Case study Dataset Avg. Network Data Rate Power Savings

Light 152 pkts/hour 54.38%
intel Humidity 32 pkts/hour 26.01%

Temperature 26 pkts/hour 22.66%
tunnel Light 13 pkts/hour 14.42%

21



0

10

20

30

40

50

60

70

80

90

Intel-lab
Light

Intel-lab
Humidity

Intel-lab
Temp.

Tunnel
Light

D
e

c
re

a
s
e

 i
n

 P
o

w
e

r c
o
n
s
u
m

e
d

(%
)

Application Datasets

(a) US.

0

10

20

30

40

50

60

70

80

90

Intel-lab
Light

Intel-lab
Humidity

Intel-lab
Temp.

Tunnel
Light

D
e

c
re

a
s
e

 i
n

 P
o

w
e

r c
o
n
s
u
m

e
d

(%
)

Application Datasets

(b) Radio.

Figure 5: Average, minimum and maximum reduction in power consumption enabled by
the separate sensing layer for the network nodes

WuR over the US WuR to 14.42% in this particular scenario. However,
it is worth-mentioning that the WuRs achieve a remarkable two orders of
magnitude reduction (397x in ID 7, 463x in ID 11) in power consumption
compared to the base configuration by cutting the costs of idle listening and
overhearing.

To sum up, we evaluated our architecture with two different WuRs, high-
lighting better energy efficiency of the radio WuR over the US WuR. In ad-
dition, an omni-directional nature of the radio WuR brings other advantages
in that a data collection tree can be constructed on-demand and adapted
to dynamic network conditions. By extending our evaluation of the US
WuR [1] to the radio WuR, we show a considerable improvement in our sys-
tem performance. Thanks to the modular nature of the VirtualSense mote,
integrating new WuRs is straight-forward.

6.3. Performance of MBS

Thanks to the combination of DBP and WuRs, we greatly reduce the
communication cost, leaving sampling cost to dominate the node consump-
tion. Therefore, we now turn our attention to the ability of MBS in reducing
the sampling cost. With MBS, a hardware peripheral can sense and process
the samples without involving the power-hungry MCU of the mote as long
as DBP needs not to update the model. This enables significant savings, as
explained next.

Figure 5 shows the percentage, minimum and maximum power savings
enabled by MBS for the network nodes. We notice that the average node
power consumption improves remarkably from 35% to 76%, irrespective of
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Figure 6: Comparison of energy consumed and harvested, plotted on a logarithmic scale
for tunnel (up) and intel (down).

the WuR technology. Moreover, the minimum improvement for a single
node is significant, above 45% when a radio WuR is used. The lower energy
efficiency of US WuR and a higher DBP traffic rate for intel datasets shift
the overall cost from sampling to communication, thus slightly dropping the
percentage power savings enabled by our sampling peripheral. Overall, when
MBS is combined with other techniques from our architecture, the average
power consumption drops from milliwatts to a few microwatts. Specifically,
Tables 3-4 highlight that the average power consumption is reduced merely
to 2.9µW and 4.4µW (ID 11, MBS) for tunnel and intel respectively.

6.4. Energetic Sustainability

Next we return to our initial motivation: namely the creation of an
energy-neutral system with a reasonable, indoor energy harvester. Referring
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to Table 2, we note that the power density of an indoor harvester is typically
less than a few microwatts/cm2. Therefore, to keep the size of the harvester
similar to the size of a node, the overall power consumption should be on
the same order.

We first consider this specifically for the tunnel dataset. Figure 6 shows
the power consumed in tunnel in three different software/hardware config-
urations against the energy harvested by a single photovoltaic cell (namely a
Panasonic AM-1816 [35]). When nodes do not use DBP, all the sensed val-
ues are sent to the sink and most nodes consume more than they can harvest
due to large forwarding overhead, making them not energetically sustain-
able. Using DBP without using MBS allows most nodes to consume less
than they harvest. Nevertheless, several nodes deep in the tunnel harvest
so little energy that they would need a large number of solar panels to be
energetically sustainable. Overall, we would require 72 photovoltaic cells to
sustain 40 nodes. Instead, if we consider the hardware sensing layer, MBS,
almost all nodes can sustain their operation with only a single photovoltaic
cell, reducing the requirement from 72 to only 44 cells, a significant savings.

We now turn our attention to intel network. Compared to tunnel,
it is characterized by a shallow data collection topology with a maximum
diameter of only four hops. As most nodes are directly connected to the
gateway (see Figure 3) and only a few nodes relay any traffic, their overall
power consumption is far less than the tunnel nodes. Furthermore, an
analysis of light traces collected from Intel Research Lab. suggests that
these nodes are exposed to a higher illuminance. It means that smaller
photovoltaic cells can be used to achieve energy neutrality, save costs, and
miniaturize the sensor node design. Figure 6 shows the energy harvested by
the same but ten times smaller photovoltaic harvester than the one used for
tunnel. When the nodes report periodic data, all forwarding nodes as well
as many non-forwarding nodes consume more power than they can harvest.
By decreasing the overall network traffic substantially, DBP reduces the
consumed power below the harvested power for most but not all the nodes.
MBS, instead, makes all the nodes energy neutral, enabling cost-efficient
perpetual data collection.

7. Conclusion

Obtaining energy neutral operation for WSNs is a challenging task, espe-
cially in indoor settings, due to the sampling and communication tasks that
require nodes to exit their extreme low power states. This paper introduced
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the concept of model-based sensing and demonstrated its effectiveness to re-
duce power consumption when combined with several other state-of-the-art
techniques. Specifically, advanced dynamic power management is adopted
at each node, prediction-based data collection is used to reduce data traffic
by avoiding the transmissions of data fitting the current model, wake-up
receivers are used to avoid idle listening in asynchronous communication,
and data storage and processing capabilities are granted to the hardware
sampling layer to allow it to discard useless samples without waking up the
main MCU.

Experimental results using data conducted in two real-world WSN case
studies show that the synergistic application of the different techniques offers
power saving of up to three orders of magnitude, representing a significant
improvement with respect to the state of the art. Most important, the pro-
posed approach brings the average power consumption of the WSNs used in
our case studies within the power budget of indoor photovoltaic harvesters,
thus achieving energy neutral operation. This study concretely demonstrates
that combining hardware and software techniques is key to energy neutrality
for energy harvesting WSNs deployed in indoor conditions.
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[36] M. Ceriotti, M. Corrà, L. D’Orazio, R. Doriguzzi, D. Facchin, S. Guna,
G. P. Jesi, R. L. Cigno, L. Mottola, A. L. Murphy, M. Pescalli, G. P.
Picco, D. Pregnolato, C. Torghele, Is there light at the ends of the

29

http://dx.doi.org/10.1155/2012/154737
http://dx.doi.org/10.1109/LCN.2004.38
http://dx.doi.org/10.1145/1644038.1644056
http://dx.doi.org/10.1504/IJSNET.2014.060725
http://dx.doi.org/10.1504/IJSNET.2014.060725
http://dx.doi.org/10.1109/TC.2005.98
 http://panasonic.net/energy/amorton/en/products/spec/AM-1816.html.
 http://panasonic.net/energy/amorton/en/products/spec/AM-1816.html.
 http://panasonic.net/energy/amorton/en/products/spec/AM-1816.html.


tunnel? Wireless sensor networks for adaptive lighting in road tunnels,
in: Proc. of the Int. Conf. on Information Processing in Sensor Networks
(IPSN), 2011.

[37] F. Osterlind, A. Dunkels, J. Eriksson, N. Finne, T. Voigt, Cross-level
sensor network simulation with cooja, in: Local Computer Networks,
Proceedings 2006 31st IEEE Conference on, 2006, pp. 641–648. doi:

10.1109/LCN.2006.322172.

[38] P. Buonadonna, D. Gay, J. Hellerstein, W. H. Hong, S. Madden, Task:
sensor network in a box, in: Wireless Sensor Networks, 2005. Pro-
ceeedings of the Second European Workshop on, 2005, pp. 133–144.
doi:10.1109/EWSN.2005.1462005.

[39] S. R. Madden, M. J. Franklin, J. M. Hellerstein, W. Hong, Tinydb:
An acquisitional query processing system for sensor networks, ACM
Trans. Database Syst. 30 (1) (2005) 122–173. doi:10.1145/1061318.

1061322.

[40] A. Bogliolo, E. Lattanzi, V. Freschi, Idleness As a Resource in Energy-
neutral WSNs, in: Proceedings of the 1st International Workshop on
Energy Neutral Sensing Systems, ENSSys ’13, 2013, pp. 12:1–12:6. doi:
10.1145/2534208.2534214.

[41] D. Porcarelli, D. Brunelli, M. Magno, L. Benini, A multi-harvester ar-
chitecture with hybrid storage devices and smart capabilities for low
power systems, in: Power electronics, electrical drives, automation and
motion (SPEEDAM), 2012 international symposium on, IEEE, 2012,
pp. 946–951. doi:10.1109/SPEEDAM.2012.6264533.

30

http://dx.doi.org/10.1109/LCN.2006.322172
http://dx.doi.org/10.1109/LCN.2006.322172
http://dx.doi.org/10.1109/EWSN.2005.1462005
http://dx.doi.org/10.1145/1061318.1061322
http://dx.doi.org/10.1145/1061318.1061322
http://dx.doi.org/10.1145/2534208.2534214
http://dx.doi.org/10.1145/2534208.2534214
http://dx.doi.org/10.1109/SPEEDAM.2012.6264533

	1 Introduction
	2 Background and Related Work
	2.1 Prediction-based data collection
	2.2 Wake-up Receiver
	2.3 Ultra-low Power Platforms

	3 System Architecture
	3.1 Derivative-Based Prediction (DBP)
	3.2 VirtualSense
	3.2.1 Microcontroller Unit
	3.2.2 Data Transceiver

	3.3 Wake-up Receivers
	3.3.1 Ultrasonic WuR
	3.3.2 Radio WuR

	3.4 Energy Harvester

	4 Model-based Sensing
	5 Experimental Setup
	5.1 Case Studies
	5.1.1 tunnel: Adaptive Lighting in Road Tunnels
	5.1.2 intel: Indoor Environmental Monitoring

	5.2 Power Models and Simulations
	5.3 Estimation of Harvestable Energy

	6 System Evaluation
	6.1 Energy Savings
	6.2 Comparison of Wake-up Receivers
	6.3 Performance of MBS
	6.4 Energetic Sustainability

	7 Conclusion

