
Using Coordination Middleware for
Location-Aware Computing: A Lime Case Study

Amy L. Murphy1,2 and Gian Pietro Picco2

1 Dipartimento di Elettronica e Informazione, Politecnico di Milano, Italy
E-mail: picco@elet.polimi.it

2 Department of Computer Science, University of Rochester, NY, USA
E-mail: murphy@cs.rochester.edu

Abstract. The decoupling between behavior and communication fos-
tered by coordination becomes of paramount importance in mobile com-
puting. In this scenario, however, coordination technology is typically
used to deal only with the application data necessary to orchestrate the
process activities. In this paper, we argue instead that the very same
coordination abstractions can be used effectively to deal also with in-
formation coming from the physical context—a fundamental aspect of
mobile computing applications.
We cast our considerations in Lime, a coordination model and middle-
ware designed for mobile computing. To support our arguments with
concrete examples, we report about the development of Tuling, a proof-
of-concept application enabling the tracking of mobile users. The lessons
learned during development enable us to assess the feasibility of the ap-
proach and identify new research opportunities.

1 Introduction

Mobile computing defines a challenging environment for software development.
Communication is enabled by wireless links, which are less reliable and intrinsi-
cally dependent on the relative positions of the mobile parties in communication.
Similarly, location affects the overall context perceived by a mobile unit, by con-
straining not only the available communication parties, but also the data avail-
able for computation, the set of accessible services, and in general the resources
available to a component.

It has been observed [13] that software development in the mobile environ-
ment can be tackled successfully by exploiting a coordination perspective. The
decoupling between behavior and communication fostered by coordination en-
ables one to separate the applicative behavior of components from the con-
tinuously changing context in which they are immersed. Examples of systems
that have applied this intuition to deal with physical mobility of hosts or log-
ical mobility of agents include Klaim [10], xmiddle [7], Tucson [12], Mars [2],
and Lime [8]. In all of these systems, a shared data structure—typically a tu-
ple space—is used to store the data available to mobile units and to represent
naturally the context available to them. Nevertheless, all of these systems focus



2 Amy L. Murphy and Gian Pietro Picco

on providing support for coordination through a context consisting essentially of
application data. Little or no support is provided for constraining the application
behavior based also on the physical context.

Clearly, this is a limitation. Dealing with a changing physical context is fun-
damental in many mobile applications. Physical context information can be very
diverse, and include local system information such as battery level or signal-noise
ratio, or environmental information such as light intensity, temperature, or am-
bient noise. Among all, location is possibly the most relevant context element,
in that it often qualifies the values of the others. For example, a temperature
reading becomes more meaningful when accompanied by the identity of the room
where it was sensed. The point, however, is that the actions of an application
component in a mobile environment may depend on one or more of these context
information values and modeling physical context becomes a necessity.

At the opposite extreme of coordination approaches, several middleware sys-
tems have been proposed that explicitly tackle the problem of managing a dy-
namically changing context. Relevant examples include the Context Toolkit [3],
Odyssey [11], Aura [5], Gaia [14], and Owl [4]. The focus of these systems is on
allowing applications to retrieve information about context, either proactively
(by directly querying some context representation) or reactively (by subscribing
to changes in the context information). The middleware takes care of properly
disseminating the context information to the involved parties, and hence greatly
simplifies the management of physical context used in mobile applications. On
the other hand, these systems provide little or no support for representing and
managing the data context, used for coordinating the behavior of the application
components.

In this paper, we argue that the gap between the two aforementioned perspec-
tives can be reduced, if not eliminated, by exploiting coordination abstractions
also for the management of the physical context. Once acquired by appropri-
ate sensors, context information is essentially like any other data, and hence
can be treated as such in a data-centric coordination approach. The very same
primitives used to manipulate, retrieve, or react to available data for the sake
of coordination can now be used for dealing with physical context information.
These two traditionally separate dimensions are unified under a common set of
abstractions, simplifying considerably the design and implementation of mobile
applications.

Although our considerations are in principle applicable to any data-centric co-
ordination approach, in this paper they are cast in Lime [8], a coordination model
and middleware expressly designed for mobile computing. A concise overview of
Lime is provided in Section 2. Section 3 illustrates the premise of our approach,
and describes how a coordination middleware can be used to disseminate physical
context information. The implications of our design approach can be understood
and assessed only through the reality check provided by application development.
Hence, to support our arguments with concrete examples, in Section 4 we report
about the design and implementation of Tuling, a proof-of-concept application
providing location tracking of mobile users. The lessons learned from this ex-



Using Coordination Middleware for Location-Aware Computing 3

perience enable us to assess, in Section 5, the feasibility of the approach and
identify new research opportunities. Finally, Section 6 ends the paper with brief
concluding remarks.

2 Lime: Linda in a Mobile Environment

The Lime model [8] defines a coordination layer for applications that exhibit log-
ical and/or physical mobility, and has been embodied in a middleware available
as open source at http://lime.sourceforge.net. Lime borrows and adapts
the communication model made popular by Linda [6].

In Linda, processes communicate through a shared tuple space, a multiset of
tuples accessed concurrently by several processes. Each tuple is a sequence of
typed parameters, such as <"foo",9,27.5>, and contains the actual information
being communicated. Tuples are added to a tuple space by performing an out(t)
operation. Tuples are anonymous, thus their removal by in(p), or read by rd(p),
takes place through pattern matching on the tuple content. The argument p is
often called a template, and its fields contain either actuals or formals. Actuals
are values; the parameters of the previous tuple are all actuals, while the last two
parameters of <"foo",?integer,?float> are formals. Formals act like “wild
cards” and are matched against actuals when selecting a tuple from the tuple
space. For instance, the template above matches the tuple defined earlier. If
multiple tuples match a template, selection is non-deterministic.

Linda characteristics resonate with the mobile setting. Communication is
implicit, and decoupled in time and space. This decoupling is of paramount
importance in a mobile setting, where the parties involved in communication
change dynamically due to migration, and hence the global context for operations
is continuously redefined. Lime accomplishes the shift from a fixed context to a
dynamically changing one by breaking up the Linda tuple space into many tuple
spaces, each permanently associated to a mobile unit, and by introducing rules
for transient sharing of the individual tuple spaces based on connectivity.

Transiently Shared Tuple Spaces. In Lime, a mobile unit accesses the global data
context only through a so-called interface tuple space (its), permanently and
exclusively attached to the unit itself. The its, accessed using Linda primitives,
contains tuples that are physically co-located with the unit and defines the only
data available to a lone unit. Nevertheless, this tuple space is also transiently
shared with the itss belonging to the mobile units currently accessible. Upon
arrival of a new unit, the tuples in its its are merged with those already shared,
belonging to the other mobile units, and the result is made accessible through
the its of each of the units. This sequence of operations, called engagement, is
performed as a single atomic operation. Similarly, the departure of a mobile unit
results in the disengagement of the corresponding tuple space, whose tuples are
no longer available through the its of the other units.

Transient sharing of the its is a very powerful abstraction, providing a mobile
unit with the illusion of a local tuple space containing tuples coming from all the



4 Amy L. Murphy and Gian Pietro Picco

units currently accessible, without any need to know them explicitly. Moreover,
the content perceived through this tuple space changes dynamically according
to changes in the system configuration.

The Lime notion of a transiently shared tuple space is applicable to a mobile
unit regardless of its nature, as long as a notion of connectivity ruling engagement
and disengagement is properly defined. Figure 1 shows how transient sharing may
take place among mobile agents co-located on a given host, and among hosts in
communication range. Mobile agents are the only active components, and the
ones carrying a “concrete” tuple space; mobile hosts are just roaming containers
providing connectivity and execution support for agents.

Operations on the transiently shared tuple space of Lime include those al-
ready mentioned for Linda, namely out, rd, and in, as well as the probing
operations rdp and inp whose semantics is to return a matching tuple or return
null if no matching tuple exists at the time the query is issued. For convenience
Lime also provides the bulk operations rdg and ing that return a set of tuples
that match the given pattern. If no matching tuples exist, the set is empty.

Restricting Operation Scope. The idea of a transiently shared tuple space re-
duces the details of distribution and mobility to changes in what is perceived as
a local tuple space. This view is powerful as it relieves the designer from specifi-
cally addressing configuration changes, but sometimes applications may need to
address explicitly the distributed nature of data for performance or optimization
reasons. For this reason, Lime extends Linda operations with scoping parame-
ters, expressed in terms of agent or host identifiers, that restrict operations to a
given projection of the transiently shared tuple space.

The out[λ](t) operation extends out by allowing the programmer to specify
that the tuple t must be placed within the tuple space of agent λ. This way, the
default policy of keeping the tuple in the caller’s context until it is withdrawn can
be overridden, and more elaborate schemes for transient communication can be
developed. Location parameters are also used to annotate the other operations
to allow access to a slice of the current context. For instance, rd[ω, λ](p) looks
for tuples matching p that are currently located at ω but destined to λ. Lime
allows ω to be either a host or an agent, enabling either an entire host-level

Interface Tuple SpaceHost-Level Tuple Space

Federated Tuple Space

migrate

Mobile Agents
Mobile Host

Fig. 1. Transiently shared tuple spaces encompass physical and logical mobility.



Using Coordination Middleware for Location-Aware Computing 5

tuple space to be queried or a subset of the host-level tuple space containing the
tuples specific to the named agent.

Reacting to Changes. In the dynamic environment defined by mobility, reacting
to changes constitutes a large fraction of application design. Therefore, Lime
extends the basic Linda tuple space with a notion of reaction. A reaction R(s, p)
is defined by a code fragment s specifying the actions to be performed when a
tuple matching the pattern p is found in the tuple space. A notion of mode also
is provided to control the extent to which a reaction is allowed to execute. A
reaction registered with mode once is allowed to fire only one time, i.e., after its
execution it becomes automatically deregistered. Instead, a reaction registered
with mode oncepertuple is allowed to fire an arbitrary number of times, but
never twice for the same tuple. Details about the semantics of reactions can be
found in [8] and a formal semantics is available in [9]. Here, it is sufficient to
note that two kinds of reactions are provided. Strong reactions couple in a single
atomic step the detection of a tuple matching p and the execution of s. Instead,
weak reactions decouple the two by allowing execution to take place eventually
after detection. Strong reactions are useful to react locally to a host, while weak
reactions are suitable for use across hosts, and hence on the entire transiently
shared tuple space.

Exposing System Configuration. With the perspective presented thus far, ap-
plications are aware only of changes in the portion of context concerned with
application data. Although this is enough for many mobile applications, in others
knowing which hosts are connected also plays a key role. For instance, a typical
problem is to react to departure of a mobile unit, or to determine the set of units
currently belonging to a Lime community. Lime provides this form of awareness
of the system configuration by using the same abstractions already discussed:
through a transiently shared tuple space conventionally named LimeSystem to
which all agents are permanently bound. The tuples in this tuple space contain
information about the mobile units present and their relationship, e.g., which
tuple spaces they are sharing or, for mobile agents, which host they reside on.
Insertion and withdrawal of tuples in the LimeSystem is the prerogative of the run-
time support. Nevertheless, applications can read tuples and register reactions
to respond to changes in the configuration of the system.

3 Representing Physical Context in Lime

Applications written for the mobile environment must have access to their own
data as well as the data of the other components within range. Providing this
access while ignoring the details of communication is the primary goal of Lime
and of other coordination systems targeting the mobile environment. In addition
to application data, many mobile applications are characterized by their need to
respond to the environment in which they find themselves, adapting application
behavior as their location, bandwidth, or environmental parameters change. In
other words, they must be able to react to changes in the physical context.



6 Amy L. Murphy and Gian Pietro Picco

The LimeSystem tuple space described previously shows that the transiently
shared tuple space style of coordination promoted by Lime can be used success-
fully to provide mobile applications access to one form of context, namely the
identity of accessible hosts and agents. Our goal here is to show that Lime can
similarly be used to represent, share, and interact with other aspects of context
as well. We further show that by placing context information into a transiently
shared tuple space applications obtain easy access to what we refer to as the
distributed context, or the context of all components within range.

At its core, our idea is simple: insert context information into a transiently
shared tuple space thus allowing all connected components to access it through
the proactive and reactive constructs of Lime. In this section we describe the
representation of context information in the tuple space, the primary access
mechanisms, and the benefits provided to the application programmer.

Making Context Accessible. Our work focuses on the sharing of and interaction
with context data through tuple spaces, intentionally leaving aside the issues
related to detecting context information as well as the format of that information.
Therefore, we do not focus on any specific sensing technologies nor even on any
specific type of context information. Instead, we provide a general infrastructure
to exploit and disseminate context, and that can be easily adapted to the needs
of any system. The key component of our infrastructure providing this isolation
is a context agent that interacts with the sensors and with Lime.

The context information to be made available is represented as tuples, iden-
tical in all respects to traditional application data tuples. Interestingly, this can
be exploited to represent single values as well as sequences of temporally related
values to maintain history or for aggregation of context information. In prin-
ciple, it is therefore possible to mix data and context tuples in a single tuple
space. This, however, leads to a cumbersome design that imposes restrictions on
applications (such as requiring that no application tuple use the same pattern as
any context tuple) and mixes the interaction with the two types of data. There-
fore, ideally the two kinds of data should be insulated from one another. Lime
supports this separation with a mechanism for creating multiple tuple spaces,
uniquely identified by name, and whose contents are independent. By creating a
separate context tuple space (e.g., named context), application tuple formats
remain unrestricted and interaction with context information is made explicit
by issuing operations on the context tuple space.

For applications residing on the same host as the context agent, the context
information is accessible locally by issuing the normal Lime operations on a
context tuple space. Such interaction enables an application to query for the
current context, and attach this to generated data. For example, a video player
can adjust its buffer size based on the currently available local memory. This
memory level information is retrieved from the local context tuple space.

Because Lime tuple spaces are transiently shared, the information in the con-
text tuple space is also available to all connected components, yielding what we
refer to as the distributed context. For example, firefighters can spread location-
enabled temperature sensors throughout a forest fire and annotate a map with



Using Coordination Middleware for Location-Aware Computing 7

the temperature gradient from the information available in the distributed con-
text. Even if only a limited number of sensors are within range, those connected
provide the context for the area immediately surrounding the firefighter gener-
ating the map.

Interacting with Context. Middleware, and in general systems targeted toward
the mobile environment, have evidenced that access to context information
should be both proactive and reactive, meaning that a program should be able
to pull the information on demand or have it pushed whenever it changes. By
representing the context information inside a Lime tuple space, both styles of
operation are available. Proactive operations map to the query operations of
Lime (e.g., rdp) while reactive mechanisms are enabled by strong and weak
Lime reactive statements. Furthermore, the Lime extensions to control scope
enable operations over the entire distributed context or over a projection of the
context tuple space, tailoring operations to apply to all hosts in range or only a
single host.

For applications such as the video player described previously, the query op-
eration rdp, restricted in scope to the application’s own host-level tuple space,
returns the needed current available memory. The same operation can be used to
retrieve the context of a remote host simply by changing the scope parameters.
Lime bulk operations, such as rdg, are especially useful to retrieve historical
context. For example, an application validating the functioning of the air condi-
tioning in a building can query for the history of temperatures in a given room.

In our previous Lime programming efforts, we found that although the query
operations are useful, the core application functionality often utilizes reactive
constructs. With respect to context information, reactions are most useful for
monitoring and immediately adapting to changes. For example, a reaction over
the host’s own context tuple space can notify an application when its battery
power is low. Changing the scope of the reaction to monitor a remote host’s bat-
tery can trigger a modification in the mode of interaction between the two hosts.
Alternately, to keep the map of temperatures up to date, a reaction over the dis-
tributed context can be registered to fire every time any sensor’s temperature
value changes.

Finally, the distributed context can easily be searched, providing a dimension
of accessibility not present in most context systems. For example, a query can be
formed to find one or all components at a specific location in space. This powerful
operation uses the same Lime primitives as before, rdp in this case, and does not
require any kind of server support, a solution common with other context-aware
systems. Such serverless operation makes our solution for managing context more
amenable for mobile ad hoc networks, and other highly dynamic scenarios.

Benefits to the Application. The ideas presented here unveil how a variety of
context information can be represented in the context tuple space and accessed
by connected components using the usual Lime primitives. This approach has
two main benefits. First, the management of context is decoupled from the ap-
plications that use it. This implies that the context maintenance mechanisms



8 Amy L. Murphy and Gian Pietro Picco

can easily be substituted or extended to present more context information from
additional sensors. For example, if an application is designed to use location
information to build a map of connected users, the location context information
can be changed from GPS to an indoor infrared tracking system without changes
to the application as long as the tuple format does not change.

Second, placing context information into a tuple space unifies the manage-
ment of application data exploited for coordination, and of the physical context
perceived by the application. This allows programmers to deal with both using
the same interface with evident benefits in terms of ease of development and
understanding of the resulting implementation.

4 Tuling: Tracking Users in Lime with GPS

To further explore and validate our ideas about representing context in Lime, we
chose to focus on a single aspect of context, namely location in physical space.
This choice is motivated by the observation that location is critical to many
mobile applications. Often, context information is dependent on the particular
location where it is sensed. Moreover, location has a value per se, in that it
provides a direct and intuitive way to express mobility of users.

In this section, we discuss the design and implementation of Tuling, an
application for collaborative exploration of a space. Although we have already
discussed the main idea for representing and interacting with context in Lime, it
is only through the elaboration of these ideas in a real application that they can
be fully appreciated and we can report about the ease of incorporating location
context into an application.

Tuling is intended to be used by multiple individuals moving through a
common environment, each equipped with a GPS- and wireless-enabled PDA.
While the immediate goal of this application is to provide a proof-of-concept for
our approach, we can envision the functionality provided as useful in several real-
world scenarios, e.g., coordination of a rescue team deployed in a in a disaster
scenario. The major portion of the display of each user, as seen on the left of
Figure 2, is a representation of the user’s current location in space, where a
sequence of dots indicates her past movement itinerary. When a new user comes
within range, her name is displayed in the box on the top right of the display.
To allow users to coordinate their actions as they move, each user can specify a
monitoring mode for viewing the movement of the others by first selecting the
user, then pressing one of the buttons to the top right.

By pressing the monitor button, a user’s movements are marked on the screen
as long as she is connected. When the user disconnects, her name disappears from
the list, but the dots remain on the screen. In monitor mode, the user’s displayed
location is kept as up to date as possible, but only the itinerary during connection
is tracked. To retrieve the history of movement that occurred before connection, a
user must press the getItinerary button. Instead of being a continuous operation
such as monitoring, this is a one-time operation that displays the entire history of
movement (up to that moment) for the selected user. Another one-time operation



Using Coordination Middleware for Location-Aware Computing 9

is to display the current location of a user by pressing the getCurrent button.
The final mode is simply to ignore a user.

In addition to these monitoring modes, Tuling provides two other that ap-
ply globally to all users that come within range. These modes are available as
menu options and are designed to always retrieve the history for every users, and
to actively monitor the movement of every user within range. When both these
modes are active, a user’s display shows the entire itinerary of every user she has
encountered, i.e., including movements that occurred before and during connec-
tion. In a disaster recovery scenario, this mode can be useful for a supervisor to
monitor the movements of all the members of a team around her.

Tuling also allows users to add annotations, such as a textual note or a digi-
tal photograph, to their own current location. For instance, after an earthquake,

Fig. 2. Screenshot of two Tuling users, Tom (the top image) and Ema, after discon-
nection. Before the two users were disconnected, each was monitoring the location of
the other, but only Ema had retrieved the history of Tom. After disconnection, the
movements of the users are not visible to one another, but only to themselves.



10 Amy L. Murphy and Gian Pietro Picco

annotations could take the form of photographs of damaged walls or descriptions
of work to be completed at a location. These annotations are indicated on the
display with a special icon: by clicking on the icon, the annotation can be viewed
as long as the user is connected.1

As already noted, Tuling can be useful in disaster recovery scenarios for
allowing workers to coordinate their actions. For example, workers monitoring
the current movements of others in the area can either avoid one another in
order to explore different territory, or gather to discuss face to face their find-
ings. Annotations created by survey workers can be evaluated by aid workers to
direct supplies to specific areas. The benefits of using Tuling include the ability
for users to interact without requiring line-of-sight, the enabling of impromptu
sharing of information without the required support of a central server, and the
variety of monitoring modes to adjust the communication overhead, and thus
battery requirements, on a per-user basis.

As a proof-of-concept application, Tuling demonstrates how the operations
available in Lime are both natural and sufficient to provide the range of inter-
action necessary for exploiting context, as we illustrate in the remainder of this
section.

Representing and Updating Location Context. The combined requirements to
both monitor the current location of a user and to display the previous itinerary
require that Tuling provide access to the current location and to the previous
locations of a user. The current location is represented by a single tuple contain-
ing the GPS coordinates and a timestamp. To update this tuple, we first insert
the new location tuple, then remove the old. The motivation for this sequence of
operations is to ensure that a location is always accessible to a probe operation.
It is true that the old value may be returned instead of the new, but the two
values are unlikely to be significantly different, and furthermore the timestamp
can be examined for freshness.

Because a host has only a single current location, we needed a separate tuple
representation for the location history, i.e., the user itinerary. We explored the
idea of having one tuple for each previous location, simply changing the pattern
to include a new field with the label history. This solution turns out to be
unreasonable because the overhead necessary to retrieve the entire history of a
user is proportional to the number of tuples retrieved. Therefore, we opted for
grouping multiple locations together into a single stride tuple that contains a
sequence number and a list of locations. The number of locations in the stride
list is tunable. We chose a value that balances the overhead of retrieving all
the stride tuples to build a history with the overhead of updating the stride
tuple with each new location. In other words, to keep the entire history in the
tuple space, each time a new location is generated the most recent stride tuple,
identified by a sequence number, is removed, updated, and reinserted into the

1 The choice of making annotations inaccessible while users are disconnected was moti-
vated by the performance considerations discussed later. If needed by an application,
this choice and be easily reversed, but with an accompanied increase in overhead.



Using Coordination Middleware for Location-Aware Computing 11

tuple space. This solution also opens up opportunities for implementing “garbage
collection” of old stride tuples.

It is worth noting that both the updating of the current and stride tuples
are operations entirely local to the agent performing them. Therefore they are
executed with very low cost and generate low system overhead.

Accessing Location Context. Tuling uses a combination of reactions and probe
operations, both over the federated tuple space as well as specifically scoped, to
implement both the functionality of the buttons on the top right of the display
and the alternate modes to monitor and retrieve the histories of all users.

To our surprise, the LimeSystem continued to be an integral part of the oper-
ation of Tuling. For example, to display the name of each user within range,
Tuling employs a reaction on the LimeSystem tuple space. By exploiting the fact
that Lime keeps this list up to date, users are able to select monitoring modes
on a per user basis, as well as see, at a glance, which users are connected.

As already mentioned, the monitor mode allows a user to be tracked while
they are connected. This essentially involves reacting to a change in the user
location and updating the display—an operation that naturally calls for a Lime
reaction. Therefore, the tracking functionality is implemented with the installa-
tion of a oncepertuple weak reaction restricted to the projection of the tuple
space of the selected user. The pattern of the reaction is that of current location
tuples.

The functionality of both the getItinerary and getCurrent buttons are im-
plemented with probe operations over the projection of the tuple space of the
selected user. The first exploits a rdg operation for stride tuples to retrieve all of
the tuples of the itinerary. The latter uses a similarly scoped rdp for retrieving
the current location tuple.

These explicitly selected modes offer the ability to tailor monitoring on a per-
user basis, constructing her view of the environment and controlling the amount
of system resources dedicated to monitoring each user. If such tight controls
are not necessary, the two options for monitoring all users and automatically
downloading the histories of all users can be enabled. Monitoring all users in
Lime is accomplished with a single oncepertuple weak reaction registered
on the transiently shared tuple space, with the pattern of the current location
tuples. The reaction fires each time any user’s location changes, updating the
display accordingly.

As in the case of a specific user’s itinerary, retrieving all itinerary information
also uses the bulk operation rdg to query a specific user’s projection of the tuple
space for all stride tuples. To accomplish this for all users, Tuling registers a
reaction on the LimeSystem tuple space to fire each time any host arrives. This,
in turn, causes the rdg to be invoked as part of the reaction code.

Exploiting Location. While the previously described functionality is designed
to show how context information can be shared and visualized, the annotation
feature of Tuling demonstrates how applications can attach location context
to application data.



12 Amy L. Murphy and Gian Pietro Picco

Annotations can be either simple text, or a file containing, for example, an
image. After the annotation has been created, Tuling associates it with the
user’s most recent location. To find it, Tuling queries the local context tuple
space using a probing read, rdp. This returns a tuple containing the timestamp
and the current location coordinate. These pieces of information, along with the
annotation are combined into a single annotation tuple, which is inserted into a
regular Lime tuple space, making it accessible to other users.

One of the requirements of Tuling is to display the existence of an anno-
tation as an icon on top of the normal location icon. With the implementation
of annotations just described, the only way to do this is to query for the ac-
tual annotation tuples at the same time that the itinerary tuples are retrieved,
or to react to annotations when a host is being monitored. If the annotations
themselves are large, this creates an unreasonable amount of overhead, especially
wasteful if the annotations are not viewed eventually by the user. Therefore, we
modified the representation of annotations in the tuple space, effectively creat-
ing two tuples with the same information as the original tuple. The first tuple,
contains only the location and an annotation identifier. It is this tuple that is
retrieved and monitored in the cases above, reducing the overhead because the
identifier is small in comparison to a typical annotation. The second tuple con-
tains the annotation identifier and the actual annotation. This tuple is retrieved
on demand when a user opts to view the annotation. The result, however, is
the restriction that annotations can only be viewed while users are connected, a
reasonable compromise for effectively managing overhead.

5 Discussion and Lessons Learned

Experience with Tuling provides evidence to support our argument for placing
context information into the tuple space. In this section we discuss the relation-
ship between our work and others and discuss extensions to Lime that would
better support context.

Related Work. The unification of access to both data and context is a factor
that distinguishes our work from that of other systems for accessing context.
For example, the Context Toolkit [3] wraps context providers with a standard
interface that provides query and notification access. In Lime, these two modes
of interaction are naturally provided by the query and reaction operations, the
same operations used for application data access.

Furthermore, the Context Toolkit provides a separate service discovery server
that identifies context providers to which the programmer can explicitly bind to
receive context information. By using Lime, this type of centralized service dis-
covery is not necessary. Instead, the currently available components are identified
from the fully distributed LimeSystem tuple space, which is also accessed by the
same tuple space operations. Finally, in Lime, while it is possible to access spe-
cific context providers by limiting the scope of the operations, it is also possible
to access the entire distributed context with the Lime primitives, something



Using Coordination Middleware for Location-Aware Computing 13

that while possible in some other systems, would require additional, non-trivial
programming effort.

Placing context information in a Lime tuple space also simplifies access and
reaction to the context of remote components. This is fundamentally different
from the context reaction mechanisms provided by Odyssey [11]. In Odyssey, a
component can register to be notified when the local context changes, allowing,
for example, a server to detect a bandwidth reduction. However, Odyssey is
not designed for servers to monitor context changes at the mobile client. In
Lime, instead, registering for remote changes is as straightforward as registering
for local changes. Furthermore, the implementation of weak reactions ensures
reasonable performance.

The work presented here is also related to the many other coordination ap-
proaches designed to address the concerns of the mobile environment. We chose
Lime as our foundation both because we are most familiar with it, and because
it is well suited to the needs of interacting with context. In principle, it should
be possible to apply our idea of representing context as data in other coordi-
nation systems, although we are not aware of any work from the coordination
community in this direction.

Lime Extensions. While the current implementation of Tuling well serves as
a proof-of-concept, the development process illuminated several directions for
extending Lime to better support interaction with context information, and
most likely with application data as well. These include the ability to atomically
change the contents of a tuple, to sequentially order a set of tuples, to replicate
data, and to search for tuples based on a range. These features were initially left
out of Lime, in an effort to strive for a minimal and yet expressive application
programming interface. In the light of their relevance for improving handling of
the physical context, however, we are currently reconsidering this decision and
planning to include these features in the next release of our middleware.

As explained in Section 4, the updating of the current location field is ac-
complished by first outputting the new tuple, then removing the old tuple. The
result is that in the short interval between the two operations, the component
has two current locations, and a probe operation such as rdp is just as likely to
return the old tuple as it is the actual current tuple. Reversing the operations,
however, leaves an interval where a component has no location and rdp may
return null. Both of these conditions could be avoided if Lime provided either
an atomic “change” operation, performing in and out in the same atomic step,
or a generic transaction construct for grouping arbitrary Lime operations.

When Tuling retrieves itinerary tuples to display the history of movement
of a user, the Lime bulk operation rdg returns the set of all stride tuples. Al-
though this set does not have an inherent ordering according to Lime and Linda
semantics, in Tuling an order is implied by the stride sequence number. Cur-
rently, the application uses this value to sort the stride tuples before visualizing
them. It would be convenient if Lime bulk operations were extended to allow
the specification of a field over which an ordering is automatically imposed, thus
releasing the programmer from the burden of coding ordering explicitly.



14 Amy L. Murphy and Gian Pietro Picco

Another feature to consider adding to Lime is replication. In Tuling, the
previous locations of the other components are effectively replicated at the ap-
plication level, to enable its visualization. Location information, however, is not
duplicated within the tuple space. Therefore, if A copies B’s history, and then
later meets C, the information about B is outside the tuple space and therefore
not accessible to C. Several efforts in the mobile ad hoc community have looked
at the issue of replication [1, 7, 15], but none of the solutions is immediately
applicable to the tuple space environment.

Finally, a useful operation to add to Tuling is to support a query such as
“find all components within a radius r from point (x, y).” Such a query requires
a range search inside the tuple space, while Lime provides only value matching.
Supporting this functionality requires a change in the tuple space implementa-
tion underlying Lime, as well as a change in the interface to the tuple space.
Nevertheless, this would provide a great improvement in the expressiveness of
the system. In Tuling, the user could monitor an area around herself, or even
request information in an area away from her current position.

6 Conclusions and Future Work

Our evaluation thus far has focused on location context. While location is useful
for many applications, other aspects of context also have direct use for mobile
applications. For example, by providing available bandwidth, applications can
adjust their use of the tuple space, querying for large tuples only when the
bandwidth is plentiful. By exposing context such as available storage space,
applications can control how much data is moved to a particular tuple space. It
is our belief that most of the effort to provide this extra context information is
in the collection of the data itself, not in the presentation of the data context in
Lime. Our work with location provides a model for this transformation as well
as solutions for issues such as large histories.

In this paper, we have presented the requirements for presenting and ac-
cessing context information with coordination mechanisms and a description of
Tuling, an application that demonstrates how location context can made avail-
able in Lime. Throughout, our goal was to provide evidence to support the use
of coordination middleware for enabling both local and remote components to
share and interact with one another’s context information. This work fills a gap
between coordination systems that focus on providing access to application data
and context-aware toolkits that concentrate only on enabling interactions with
context. Furthermore, it effectively demonstrates that context information and
application data can be treated in a unified manner and accessed with the same
coordination operations. The result is a significant reduction in the programming
effort to develop mobile applications that require access to physical context.

Acknowledgements. The work described in this paper was partially supported
by the projects VICOM and IS-MANET, funded by the Italian government. The



Using Coordination Middleware for Location-Aware Computing 15

authors wish to thank Emanuele Cordone and Thomas Pengo for their work on
the implementation of Tuling.

References

1. M. Boulkenafed and V. Issarny. A middleware service for mobile ad hoc data
sharing, enhancing data availability. In Proceedings of the ACM/IFIP/USENIX
International Middleware Conference, Rio de Janeiro (Brazil), June 2003.

2. G. Cabri, L. Leonardi, and F. Zambonelli. Reactive Tuple Spaces for Mobile Agent
Coordination. In Proc. of the 2nd Int. Workshop on Mobile Agents, LNCS 1477.
Springer, 1998.

3. A.K. Dey, D. Salber, and G.D. Abowd. A conceptual framework and a toolkit for
supporting the rapid prototyping of context-aware applications. Human-Computer
Interaction (HCI) Journal, special issue on Context-Aware Computing, 16(2-4):97–
166, 2001.

4. M.R. Ebling, G.D.H. Hunt, and H. Lei. Issues for context services for pervasive
computing. In Proceedings of the Workshop on Middleware for Mobile Computing.
IFIP/ACM, 2001.

5. D. Garlan, D. Siewiorek, A. Smailagic, and P. Steenkiste. Project aura: Toward
distraction-free pervasive computing. IEEE Pervasive Computing, April-June 2002.

6. D. Gelernter. Generative Communication in Linda. ACM Computing Surveys,
7(1):80–112, Jan. 1985.

7. C. Mascolo, L. Capra, S. Zachariadis, and W. Emmerich. xmiddle: A data-sharing
middleware for mobile computing. Kluwer Personal and Wireless Communications
Journal, 21(1), April 2002.

8. A.L. Murphy, G.P. Picco, and G.-C. Roman. Lime: A Middleware for Physical and
Logical Mobility. In F. Golshani, P. Dasgupta, and W. Zhao, editors, Proc. of the
21st Int. Conf. on Distributed Computing Systems (ICDCS-21), pages 524–533,
May 2001.

9. A.L. Murphy, G.P. Picco, and G.-C. Romjan. Lime: A coordination middleware
supporting mobility of hosts and agents. Technical Report WUCSE-03-21, Wash-
ington University, Department of Computer Science, St. Louis, MO (USA), 2003.

10. R. De Nicola, G. Ferrari, and R. Pugliese. Klaim: A Kernel Language for Agents
Interaction and Mobility. IEEE Trans. on Software Engineering, 24(5):315–330,
1998.

11. B.D. Noble and M. Satyanarayanan. Experience with adaptive mobile applications
in odyssey. Mobile Networks and Applications, 4, 1999.

12. A. Omicini and F. Zambonelli. Tuple Centres for the Coordination of Internet
Agents. In Proc. of the 1999 ACM Symp. on Applied Computing (SAC’00), Febru-
ary 1999.

13. G.-C. Roman, A.L. Murphy, and G.P. Picco. Coordination and Mobility. In
A. Omicini, F. Zambonelli, M. Klusch, and R. Tolksdorf, editors, Coordination of
Internet Agents: Models, Technologies, and Applications, pages 254–273. Springer,
2000.

14. M. Romn, C. Hess, R. Cerqueira, A. Ranganathan, R.H. Campbell, and K. Nahrst-
edt. Gaia: a middleware platform for active spaces. ACM SIGMOBILE Mobile
Computing and Communications Review, 6(4):65–67, 2002.

15. D. Terry, M. Theimer, K. Petersen, A. Demers, M. Spreitzer, and C. Hauser. Man-
aging Update Conflicts in Bayou, a Weakly Connected Replicated Storage System.
Operating Systems Review, 29(5):172–183, 1995.


