
Stefano Tonetta

tonettas@fbk.eu

Tutorial of ASE’13

 Joint work with

o Alessandro Cimatti

o Michele Dorigatti

o Pietro Braghieri

 Supported by the European ARTEMIS SafeCer project.

Stefano Tonetta, ASE'13 Tutorial 2

1. Introduction and motivations

2. Infinite-state model checking

3. Properties specification languages

4. Contract-based design with temporal logics

5. OCRA tool support

Stefano Tonetta, ASE'13 Tutorial 3

A tutorial on property-based and contract-based

design of system architectures

Stefano Tonetta, ASE'13 Tutorial

 Models used for system requirements, architectural design,
analysis, validation and verification.

 Different system-level analysis (safety, security,
performance, …).

 Top-down refinement process.

 Software/hardware co-engineering.

 Definition of the platform and deployment.

 Applied to embedded systems:

o Interaction with physical world (continuous time).

o Real-time constraints.

o Complex interaction of many components:

• Sensors, actuators, monitors, communication links.

Stefano Tonetta, ASE'13 Tutorial 5

 Formal methods
o Formal specification languages

• Assign models a mathematical meaning

• Different property languages for different model semantics

o Formal verification to prove the properties on the models.

 Verification flow:
o Design models translated into input for verification engine:

• Typically a (meaningful) subset is considered

• Automatic translation preserving semantics of properties of interest

o Requirements formalized into properties
• This is typically a manual process.

o Results mapped back to the design flow.

 This tutorial will focus on:
o Model checking [CGP99] techniques for a wide spectrum:

• Finite states vs. infinite states

• Discrete time vs. hybrid/continuous-time.

o Properties languages in the different cases.

Stefano Tonetta, ASE'13 Tutorial 6

 A component is a unit of composition with contractually

specified interfaces [Szy02].

 Components are the constituent parts of a system

architecture.

 Sub-components interact through connections.

 They are seen as black box for proper

o Compositional verification.

o Reuse.

o Structural/independent refinement.

Stefano Tonetta, ASE'13 Tutorial 7

 Compositional verification [RBH+01]:

1. Prove properties of the components (for example, with model checking).

2. Combine components’ properties to prove system’s property without looking into
the internals of the components (sometimes reduced to validity/satisfiability check

for composition of properties).

 Formally:
𝑆1 ⊨ 𝑃1, 𝑆2 ⊨ 𝑃2, … , 𝑆𝑛 ⊨ 𝑃𝑛

𝛾𝑆(𝑆1, 𝑆2, … , 𝑆𝑛) ⊨ 𝛾𝑃(𝑃1, 𝑃2, … , 𝑃𝑛)
 𝛾𝑃 𝑃1, 𝑃2, … , 𝑃𝑛 ⊨ 𝑃

𝛾𝑆 𝑆1, 𝑆2, … , 𝑆𝑛 ⊨ 𝑃

 𝛾𝑃 combines the properties depending on the connections used in 𝛾𝑆

 E.g. synchronous case:

𝛾𝑃 𝑃1, 𝑃2, … , 𝑃𝑛 = 𝜌𝛾𝑆 𝑃1 ∧ 𝑃2 ∧ ⋯∧ 𝑃𝑛

 where 𝜌𝛾𝑆 is the renaming of symbols defined by the connections in 𝛾𝑆.

Stefano Tonetta, ASE'13 Tutorial 8

9

A

B C

D E

1. Step-wise refinement of

components.

2. Compositional

verification.

3. Proper reuse of

components.

Support to contracts: a
temporal logic approach.

Component-
based

systems

Property
languages

Model
checking

Stefano Tonetta, ASE'13 Tutorial 10

A tutorial on property-based and contract-based

design of system architectures

Stefano Tonetta, ASE'13 Tutorial

 Problem of checking if a system
satisfies a property [CGP99].

 Algorithmic procedure to analyze
Reactive Systems
o systems with

infinite behaviors

o hardware, communication
protocols, operating
systems, controllers

 30 years old

 Turing Award 2007 (Clarke,
Emerson, and Sifakis).

 Tremendous Impact:
o Routinely applied

in hardware design.

o Increasing use in the design of
embedded systems.

o Ideal for model-based system
engineering.

Stefano Tonetta, ASE'13 Tutorial 12

 Symbolic variables 𝑉 = {𝑣1, … , 𝑣𝑛} to represent the state space.

 Symbolic formulas used to represent:

o Set of states: 𝜙 𝑉 ≡ 𝑠 𝑠 ⊨ 𝜙

o Set of transitions: 𝑇 𝑉, 𝑉′ ≡ 𝑠, 𝑠′ 𝑠, 𝑠′ ⊨ 𝜙

• Where the variables 𝑉′ = {𝑣′1, … , 𝑣′𝑛} represent next state variables.

 A valuation s:VD used to build a formula true for exactly that

valuation.

o x1,y1,z5 we derive the formula x=1y=1z=5

 Each complete assignment can be considered a state

 A transition system is represented by:

o The set of initial states represented by the formula 𝐼(𝑉)

o The transition relation represented by the formula 𝑅(𝑉, 𝑉′)

Stefano Tonetta, ASE'13 Tutorial 13

 Symbolic algorithms search the state space
manipulating formulas.

 Main types of algorithms:

o Based on fix-point:

• Compute the pre/post-image of a set of states with quantifier
elimination, e.g., 𝑝𝑟𝑒 𝜙 ≔ ∃𝑉′ 𝜙 ∧ 𝑇

• Accumulate until at fix-point you get all reachable states.

o Based on satisfiability:

• Prove properties with a series of satisfiability checks (𝑠𝑎𝑡(𝜙)
iff there exists 𝑠 such that 𝑠 ⊨ ϕ).

o Based on abstraction:

• E.g. predicate abstraction (partition states according to
predicates).

• Properties proved on abstract system hold also on the
original system.

Stefano Tonetta, ASE'13 Tutorial 14

 Bounded Model Checking (BMC) [BCC+99]
o Check 𝑠𝑎𝑡 𝜙𝑘 where ϕ𝑘 is sat iff there exists a path of 𝑀 of length up to 𝑘

violating the property 𝑃.

o Focused on finding errors.

 Induction
o Base case: check if the initial state satisfies 𝑃 (invariant)

o Inductive case: check if the transitions preserve the invariant.

 K-induction [SSS00]
o Base case: check if all initial path satisfies 𝑃 (invariant) up to 𝑘 steps.

o Inductive case: check if every path of 𝑘 + 1 steps preserve the invariant.

 IC3 [Bra11]
o Keeps sequence of relative inductive invariants (frames).

o Use counterexamples to strengthen the frames.

 Also combined with abstraction:
o Interpolation-based abstraction [McM03]

• Unsat BMC used to over-approximate reachable states.

o Implicit abstraction [Ton09]
• SAT-based algorithms on abstract state space (without computing explicitly it).

 Stefano Tonetta, ASE'13 Tutorial 15

 Previous algorithms assume to have a solver for the
satisfiability of formulas.

 First developed for finite-state systems with the support of
SAT solvers.

 Satisfiability Modulo Theory (SMT):

o Satisfiability for decidable fragments of first-order logic.

o SAT solver used to enumerate Boolean models.

o Integrated with decision procedure for specific theories, e.g., theory
of real linear arithmetic.

 SAT solvers substituted by SMT solvers.

 Search algorithms applied to infinite-state systems
(although in general undecidable).

 Stefano Tonetta, ASE'13 Tutorial 16

 Hybrid systems encoded into symbolic transition systems

with SMT constraints [CMT11,CMT13].

 Reals used to represent time and continuous variables.

 Transitions are either

o Discrete: time does not change, state variables change according to

transition relation 𝜙 𝑉, 𝑉′

o Timed: time elapses, discrete variables do not change, continuous

variables evolve according to the flow law

• E.g., the flow condition 𝑥 < 𝑎 is encoded into

𝑥′ − 𝑥 < 𝑎 𝑡′ − 𝑡 where 𝑡 is the time variable.

Stefano Tonetta, ASE'13 Tutorial 17

A tutorial on property-based and contract-based

design of system architectures

Stefano Tonetta, ASE'13 Tutorial

 Properties are expressions in a mathematical logic using

symbols of the system description.

 Used to formalize requirements.

 Also defined as assertions on the system’s behavior.

 Problems:

o Analysis: find the properties of a system.

o Verification: check if the system satisfies the properties.

o Validation: check if we are considering the right properties.

o Synthesis: construct a system that satisfies the properties.

Stefano Tonetta, ASE'13 Tutorial 19

Stefano Tonetta, ASE'13 Tutorial

Requirement 1 Property ϕ1 Formalized into Semantics

Requirement 2 Property ϕ2 Formalized into Semantics

A model

(trace)

A model

of both
20

 Conceived by Pnueli in 1977 [Pnu77]

 Linear models
o State sequences (traces).

 Built over set of atomic propositions
AP.

 LTL formulas are the smallest set of
formulas such that:
o any atomic proposition p AP is an LTL

formula;

o if p and q are LTL formulas, then p,
pq, pq are LTL formulas;

o if p and q are LTL formulas, then X p, G
p, F p, and [p U q] are LTL formulas.

 Semantics defined for every trace, for
every 𝑖 ∈ ℕ .

 𝑀 ⊨ 𝜙 iff 𝑀,𝜎, 0 ⊨ 𝜙 for every trace
𝜎 of 𝑀.

Stefano Tonetta, ASE'13 Tutorial 21

 𝐺𝑝 “always p” – invariant

 𝐺(𝑝 → 𝐹𝑞) “p is always followed by q” - reaction

 𝐺(𝑝 → 𝑋𝑞) “whenever p holds, q is set to true” – immediate

reaction

 𝐺𝐹𝑝 “infinitely many times p” – fairness

 𝐹𝐺𝑝 “eventually permanently p”

 𝐺(𝑝 → 𝑞𝑈𝑟)

Stefano Tonetta, ASE'13 Tutorial 22

 𝐺 𝑟𝑒𝑞𝑢𝑒𝑠𝑡 → 𝐹 𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑑

 𝐺 𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑑 → 𝐹(𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑑)

 𝐺 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑑 → 𝑋 𝑔𝑟𝑎𝑛𝑡

From which we can entail

 𝐺(𝑟𝑒𝑞𝑢𝑒𝑠𝑡 → 𝐹 𝑔𝑟𝑎𝑛𝑡)

Stefano Tonetta, ASE'13 Tutorial 23

 Past operators

o 𝑌𝜙, in the previous state 𝜙, dual of 𝑋

o 𝑂𝜙, in the past once 𝜙, dual of 𝐹

o 𝐻𝜙, in the past always 𝜙, dual of 𝐺

o 𝜙1𝑆𝜙2, in the past 𝜙1 since 𝜙2, dual of 𝑈

Stefano Tonetta, ASE'13 Tutorial 24

 RELTL enriches LTL with regular expressions:

o Suffix implication: 𝑟 ∣→ 𝜙 means that every finite sequence

matching 𝑟 is followed by a suffix satisfying 𝜙.

o Suffix conjunction: 𝑟 ⋄→ 𝜙 means that there exists a finite

sequence matching 𝑟 and followed by a suffix satisfying 𝜙.

 Example:

o ¬𝑝 ∗ ; 𝑝 ∗ 3 → 𝐹𝑞

o 𝐺(𝑟𝑒𝑞𝑢𝑒𝑠𝑡; 𝑏𝑢𝑠𝑦 ∗ ; 𝑔𝑟𝑎𝑛𝑡 → 𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒)

Stefano Tonetta, ASE'13 Tutorial 25

 Rich language to specify assertions on hardware design.

 Include RELTL.

 Increase usability with

o Syntactic sugar

o English words instead of math symbols:

• “always” (𝐺)

• “never” (𝐺¬)

• “eventually” (𝐹)

• “next” (𝑋)

Stefano Tonetta, ASE'13 Tutorial 26

 Use first-order predicates instead of propositions:

o 𝐺 𝑥 ≥ 𝑎 ∧ 𝑥 ≤ 𝑏

o 𝐺𝐹 𝑥 = 𝑎 ∧ 𝐺𝐹 𝑥 = 𝑏

 Predicates interpreted according to specific theory T

(henceforth, only used reals).

 “next” to express changes/transitions:

o 𝐺 𝑛𝑒𝑥𝑡 𝑥 = 𝑥 + 1

o 𝐺(𝑛𝑒𝑥𝑡 𝑎 − 𝑎 ≤ 𝑏)

Stefano Tonetta, ASE'13 Tutorial 27

 𝐺(𝑝 → 𝐹≤3𝑞) “p is followed by q within 3 time units”

 𝐺(𝑝 → 𝐺≤2𝑞) “Whenever p holds, q holds in the following

two time units”

 𝐺(𝑝 → ¬𝑞𝑈≥1𝑞) “p is followed by q but only after 1 time

unit”

Stefano Tonetta, ASE'13 Tutorial

p

q

S
TA

T
E

T
IM

E

28

 𝐺(𝑑𝑒𝑟 𝑥 < 2) “The derivative of x is always less than 2”

 𝐺(𝑎 → 𝑑𝑒𝑟 𝑥 = 0) “Whenever a holds, the derivative of x

is zero”

 𝐺 𝑎 → 𝑏𝑈𝑑𝑒𝑟 𝑥 ≤ 5 “Whenever a holds, b remain true

until the derivative of x is less or equal to 5”.

Stefano Tonetta, ASE'13 Tutorial

speed

limit

warning

S
TA

T
E

T
IM

E

𝐺(𝑠𝑝𝑒𝑒𝑑 > 𝑙𝑖𝑚𝑖𝑡 →
𝐹(𝑤𝑎𝑟𝑛𝑖𝑛𝑔))

29

 Human-readable language for HRELTL.

 Controlled natural language expressions. Examples:

o “always” (𝐺)

o “in the future” (𝐹)

o “and” (∧)

 Validated in the EuRailCheck project focus on the
formalization and validation of ETCS requirements.

o Example: “The train trip shall issue an emergency brake command,
which shall not be revoked until the train has reached standstill and
the driver has acknowledged the trip.“

o Formalized into: “always (train_trip implies
(emergency_brake_command until (der(train_location)=0 and
driver_acknowledges_trip)))”

Stefano Tonetta, ASE'13 Tutorial 30

A tutorial on property-based and contract-based

design of system architectures

Stefano Tonetta, ASE'13 Tutorial

 A component has

o A syntactic interface

o Optionally, an internal structure.

o A behavior.

o An environment.

o Properties.

Stefano Tonetta, ASE'13 Tutorial 32

 A component interface defines boundary of the interaction

between the component and its environment.

 Consists of:

o Set of input and output ports (syntax)

• Ports represent visible data and events exchanged with environment.

o Set of traces (semantics)

• Traces represent the behavior, history of events and values on data ports.

33

Component

In
p

u
t

O
u

tp
u

t

Stefano Tonetta, ASE'13 Tutorial

Component

 A component has an internal structure.

 Architecture view:
o Subcomponents

o Inter-connections

o Delegations

 State-machine view:
o Internal state

o Internal transitions

o Language over the ports

34

In
p

u
t

O
u

tp
u

t

Component

Sub1

Sub2

Stefano Tonetta, ASE'13 Tutorial

 𝐼𝑆: input ports of component 𝑆

 𝑂𝑆: output ports of 𝑆

 𝑉𝑆 = 𝐼𝑆 ∪ 𝑂𝑆: all ports of 𝑆

 𝑇𝑟(𝑋) traces over 𝑋 ⊆ 𝑉𝑆 (sequence of assignments to 𝑋)

 State machine 𝐼𝑚𝑝 implementation of 𝑆 iff L(𝐼𝑚𝑝) ⊆
𝑇𝑟 𝑉𝑆

 𝑀 can be associated with 𝜇𝐼𝑚𝑝: 𝑇𝑟 𝐼𝑆 → 2𝑇𝑟 𝑂𝑆 such that

𝜇𝐼𝑚𝑝 𝜎𝑖 = {𝜎𝑜 ∣ 𝜎𝑖 × 𝜎𝑜 ∈ 𝐿(𝐼𝑚𝑝)}
o Input trace mapped to a set of output traces

o “set” to consider non determinism

o Empty set corresponds to rejected input trace

35 Stefano Tonetta, ASE'13 Tutorial

 State machine 𝐸𝑛𝑣 environment of 𝑆 iff L(𝐸𝑛𝑣) ⊆ 𝑇𝑟(𝐼𝑆)

 Compatibility of implementation with environment (e.g., for

reuse):

o Trace-based (black-box) view:

• 𝐼𝑚𝑝 must accept any trace of 𝐸𝑛𝑣 (i.e., L(𝐸𝑛𝑣) ⊆ 𝜎 𝜇𝐼𝑚𝑝 𝜎 ≠ ∅)

o State-based (glass-box) view:

• For any reachable state of 𝐼𝑚𝑝 × 𝐸𝑛𝑣, for any input transition of 𝐸𝑛𝑣,

there exists a matching transition of 𝐼𝑚𝑝.

• As in interface theory [AH01] (note that 𝐼𝑚𝑝 × 𝐸𝑛𝑣 is a closed system).

36 Stefano Tonetta, ASE'13 Tutorial

 Components are composed to create composite components.

 Different kind of compositions:

o Synchronous,

o Asynchronous,

o Synchronizations:

• Rendez-vous vs. buffered;

• Pairwise, multicast, broadcast, multicast with a receiver

 Connections map (general rule of architecture languages):

o Input ports of the composite component

o Output ports of the subcomponents

Into

o Output ports of the composite component

o Input ports of the subcomponents.

Stefano Tonetta, ASE'13 Tutorial 37

 A component is actually a component type.

 A system architecture is an instance of a composite

component.

 It defines a tree of component instances.

Stefano Tonetta, ASE'13 Tutorial 38

 Properties of the component and its environment.

 Can be seen as assertion for component interfaces.

 Contracts used to characterize the correctness of component
implementations and environments.

 Typically, properties for model checking have a “god” view of the
system internals.

 For components instead:

o Limited to component interfaces.

o Structure into assumptions and guarantees.

 Contracts for OO programing are pre-/post-conditions [Meyer,
82].

 For systems, assumptions correspond to pre-conditions,
guarantees correspond to post-conditions.

Stefano Tonetta, ASE'13 Tutorial 39

 Assertions used to represent sets of traces over the component
ports:
o 𝜙(𝑉) assertion over variables 𝑉

o 〈 𝜙 〉 ⊆ 𝑇𝑟 𝑉 semantics of 𝜙

 A contract of component 𝑆 is a pair 〈𝐴, 𝐺〉 of assertions over 𝑉𝑆
o A is the assumption,

o G is the guarantee.

 𝐸𝑛𝑣 is a correct environment iff L(𝐸𝑛𝑣) ⊆ 〈 𝐴 〉
 𝐼𝑚𝑝 is a correct implementation iff L(𝐼𝑚𝑝) ∩ 〈 𝐴 〉 ⊆ 〈 𝐺 〉

40

Component

In
p

u
t

O
u

tp
u

t
Assumption

A

Behaviors

M

Guarantee

G Example with Othello assertions:

assume:

 always (Pedal_Pos1 iff Pedal_Pos2)

guarantee:

 always ((Pedal_Pos1 or Pedal_Pos2)

 implies (time_until(Brake_Line) <=10));

Stefano Tonetta, ASE'13 Tutorial

 The set of contracts 𝐶𝑖 refines 𝐶 with the connection 𝛾 (𝐶𝑖 ≼𝛾 𝐶) iff

for all correct implementations 𝐼𝑚𝑝𝑖 of 𝐶𝑖 and correct environment 𝐸𝑛𝑣
of 𝐶:

1. The composition of {𝐼𝑚𝑝𝑖} is a correct implementation of C.

2. For all k, the composition of 𝐸𝑛𝑣 and 𝐼𝑚𝑝𝑖 𝑖≠𝑘 is a correct environment of 𝐶𝑘.

 Verification problem:

o check if a given refinement is correct (independently from implementations).

41

Component

Sub

Sub

C

C1

C2

 Given C1=<1,1>, … , C1=<n,n>, C=<,>

 Proof obligations for 𝐶𝑖 ≼ 𝐶:

o 𝛾 𝛼𝑗 → 𝛽𝑗1≤𝑗≤𝑛 → 𝛼 → 𝛽

o 𝛾 𝛼𝑗 → 𝛽𝑗2≤𝑗≤𝑛 → 𝛼 → 𝛼1

o …

o 𝛾 𝛼𝑗 → 𝛽𝑗1≤𝑗≤𝑛,𝑗≠𝑖 → 𝛼 → 𝛼𝑖

o …

o 𝛾 𝛼𝑗 → 𝛽𝑗1≤𝑗≤𝑛−1 → 𝛼 → 𝛼𝑛

 Theorem: 𝐶𝑖 ≼𝛾 𝐶 iff the proof obligations are valid. [CT12]

42 Stefano Tonetta, ASE'13 Tutorial

 Weak vs. strong assumptions (both important):

o Weak assumptions

• Define the context in which the guarantee is ensured

• As in assume-guarantee reasoning

• Different assume-guarantee pairs may have inconsistent assumptions

(if x>0 then …, if x<0 then …)

o Strong assumptions

• Define properties that must be satisfied by the environment.

• Original idea of contract-based design.

• If not satisfied, the environment can cause a failure (division by zero,

out of power, collision).

Stefano Tonetta, ASE'13 Tutorial 43

 Correspond to one direction of the contract refinement.

 Many works focused on finding the right

assumption/guarantee.

 E.g. how to break circularity?

o 𝐺 𝐴 → 𝐵 ∧ 𝐺 𝐵 → 𝐴 ⇒ 𝐺(𝐴 ∧ 𝐵) is false

o Induction-based mechanisms

o 𝐵 ∧ 𝐺 𝐴 → 𝑋𝐵 ∧ 𝐴 ∧ 𝐺 𝐵 → 𝑋𝐴 ⇒ 𝐺(𝐴 ∧ 𝐵) is true

 Note they are structural ways to prove the property-based

refinement.

Stefano Tonetta, ASE'13 Tutorial 44

A tutorial on property-based and contract-based

design of system architectures

Stefano Tonetta, ASE'13 Tutorial

 OCRA=Othello Contract Refinement Analysis [CDT13]

 Contracts’ assertions specified in Othello.

 Textual representation of the architecture.

 Built on top of nuXmv for infinite-state model checking.

 Integrated with CASE tools:

o AutoFocus3

• Developed by Fortiss.

• For synchronous system architectures.

o CHESS

• Developed by Intecs.

• For SysML and UML modeling.

 One of the few tools supporting contract-based design for embedded
systems.

 Publicly available (for non-commercial purposes) at

https://es.fbk.eu/tools/ocra

 46 Stefano Tonetta, ASE'13 Tutorial

 Rich component interfaces to specify:

o Input/output ports

o Data/Event ports.

o Including real-time and safety aspects.

 Contracts in temporal logics.

 Temporal formulas used to characterize set of traces over

the ports of components.

47 Stefano Tonetta, ASE'13 Tutorial

Stefano Tonetta, ASE'13 Tutorial

COMPONENT system

…

COMPONENT A

…

COMPONENT B

…

48

Stefano Tonetta, ASE'13 Tutorial

COMPONENT system

 INTERFACE

 INPUT PORT x: continuous;

 OUTPUT PORT a: boolean;

 …

 REFINEMENT

 …

COMPONENT A

…

COMPONENT B

…

49

Stefano Tonetta, ASE'13 Tutorial

COMPONENT simple system

 INTERFACE

 INPUT PORT x: continuous;

 OUTPUT PORT v: boolean;

 CONTRACT v_correct

 assume: always x>=0;

 guarantee: always (x=0 implies v);

 REFINEMENT

 …

COMPONENT A

…

COMPONENT B

…

50

Stefano Tonetta, ASE'13 Tutorial

COMPONENT simple system

 INTERFACE

 INPUT PORT x: continuous;

 OUTPUT PORT v: boolean;

 CONTRACT v_correct

 assume: always x>=0;

 guarantee: always (x=0 implies v);

 REFINEMENT

 SUB a: A;

 SUB b: B;

 CONNECTION a.x := x;

 CONNECTION b.y := a.v;

 CONNECTION v:= b.v;

 …

51

Stefano Tonetta, ASE'13 Tutorial

COMPONENT simple system

 INTERFACE

 INPUT PORT x: continuous;

 OUTPUT PORT v: boolean;

 CONTRACT v_correct

 assume: always x>=0;

 guarantee: always (x=0 implies v);

 REFINEMENT

 SUB a: A;

 SUB b: B;

 CONNECTION a.x := x;

 CONNECTION b.vi := a.v;

 CONNECTION v:= b.vo;

 CONTRACT v_correct REFINEDBY a.v_correct, b.pass;
52

Stefano Tonetta, ASE'13 Tutorial 53

System

A

B

v_correct

pass

x v

v_correct

x x v

vi

vo v

 LTL operators with the following syntax:

o “always” 𝐺

o “in the future” 𝐹

o “until” 𝑈

o “then” 𝑋

o “historically” 𝐻

o “in the past” 𝑂

o “since” 𝑆

o “previously” 𝑌

Stefano Tonetta, ASE'13 Tutorial 54

 Port types are either

o NuSMV types: “boolean”, enumeratives, ...

o nuXmv additional types: “real”, “integer”, …

o “continuous”, i.e. real-value ports evolving continuously in time.

o “event”, i.e. boolean-value port that is assigned only on discrete

transitions.

 Atomic formulas may be:

o Boolean variables.

o Equalities.

o Arithmetic predicates over integer, real, and continuous terms.

Stefano Tonetta, ASE'13 Tutorial 55

 Special function symbols:

o “der” denoting the derivative of a continuous variable (e.g., “der(x)=0”).

o “next” denoting the next value after a discrete change (e.g. “next(x)=x+1”).

o “time_until” used to express constraints on the time to the next occurrence of
an event:

• “time_until(e)<=2” means ¬𝑒 𝑈≤2𝑒

 Syntactic sugar:

o fall(x) means “x=true and next(x)=false”

o rise(x) means “x=false and next(x)=true”

o change(x) means “next(x)!=x”

 Important warning:

o The time model is hybrid with continuous evolution.

o What does “next” mean when time elapses?

o In OCRA/Othello/HRELTL, “next” forces a discrete step:

• “always ((der(timer)=1) and (timer=timeout implies next(timer)=0))”

Stefano Tonetta, ASE'13 Tutorial 56

 ocra_check_syntax

 ocra_check_refinement

 ocra_check_consistency

 ocra_check_implementation

 ocra_check_receptiveness

 Typical script:
o set verbose_level 1

o set on_failure_script_quits 1

o set pp_list cpp

o ocra_check_syntax -i SenseSpacecraftRate.oss

o ocra_check_refinement

o quit

 Call: ocra –source SenseSpacecraftRate.cmd

Stefano Tonetta, ASE'13 Tutorial 57

 OCRA is parametrized by the logic.

 The expressions can be restricted and interpreted as

discrete-time LTL or hybrid LTL.

 Default is hybrid.

 Set discrete-time to switch to LTL.

Stefano Tonetta, ASE'13 Tutorial 58

 For every component, for every refined contract, check

refinement.

 For every proof obligation, check its validity:

o [OK] if valid

o [BOUND OK] if no counterexample found up to k

o [FAIL] if found counterexample

Stefano Tonetta, ASE'13 Tutorial 59

Stefano Tonetta, ASE'13 Tutorial 60

Stefano Tonetta, ASE'13 Tutorial 61

Stefano Tonetta, ASE'13 Tutorial 62

 Contract-based design powerful

o For property refinement

o Safety analysis

 Temporal logic is suitable for component contracts.

 Contract framework parametrized by the logic.

 SMT-based model checking used to reason with expressive

properties.

 OCRA tool support.

Stefano Tonetta, ASE'13 Tutorial 63

 Basic concepts on contract-based design for embedded systems:

o Albert Benveniste, Benoît Caillaud, Alberto Ferrari, Leonardo Mangeruca,
Roberto Passerone, and Christos Sofronis. Multiple Viewpoint Contract-Based
Specification and Design. FMCO 2007.

o Manfred Broy: Towards a Theory of Architectural Contracts: - Schemes and
Patterns of Assumption/Promise Based System Specification. Software and
Systems Safety - Specification and Verification 2011: 33-87

o Alberto Sangiovanni-Vincentelli, Werner Damm and Roberto Passerone. Taming
Dr. Frankenstein: Contract-Based Design for Cyber-Physical Systems. European
Journal of Control, 18(3):217-238, 2012.

o Albert Benveniste, Benoît Caillaud, Dejan Nickovic, Roberto Passerone, Jean-
Baptiste Raclet, Philipp Reinkemeier, Alberto L. Sangiovanni-Vincentelli, Werner
Damm, Thomas A. Henzinger, and Kim G. Larsen. Contracts for Systems Design.
Rapport de recherche RR-8147, INRIA, Nov. 2012.

 META program and AGREE tool by Cofer and colleagues.

o Also on system architecture with temporal logics for assume-guarantee
reasoning.

Stefano Tonetta, ASE'13 Tutorial 64

 [CGP99] E.M. Clarke, O. Grumberg, D.A. Peled, Model Checking. MIT Press, 1999.

 [Szy02] C. Szyperski, Component Software: Beyond Object-Oriented Programming, 2nd ed.. Boston, MA: Addison-
Wesley, 2002.

 [RBH+01] W.P. de Roever, F.S. de Boer, U. Hannemann, J.Hooman, Y. Lakhnech, M. Poel, J. Zwiers, Concurrency
Verification: Introduction to Compositional and Noncompositional Methods. Cambridge University Press 2001.

 [BCC+99] A. Biere, A. Cimatti, E.M. Clarke, M. Fujita, Y. Zhu, Symbolic Model Checking Using SAT Procedures
instead of BDDs. DAC 1999: 317-320.

 [SSS00] M. Sheeran, S. Singh, G. Stålmarck, Checking Safety Properties Using Induction and a SAT-Solver.
FMCAD 2000: 108-125.

 [Bra11] A.R. Bradley. SAT-Based Model Checking without Unrolling. VMCAI 2011: 70-87.

 [McM03] K.L. McMillan, Interpolation and SAT-Based Model Checking. CAV 2003: 1-13.

 [Ton09] S. Tonetta, Abstract Model Checking without Computing the Abstraction. FM 2009: 89-105.

 [CMT11] A. Cimatti, S. Mover, S. Tonetta, HyDI: A Language for Symbolic Hybrid Systems with Discrete
Interaction. EUROMICRO-SEAA 2011: 275-278.

 [CMT13] A. Cimatti, S. Mover, S. Tonetta, SMT-based scenario verification for hybrid systems. Formal Methods
in System Design 42(1): 46-66 (2013).

 [Pnu77] A. Pnueli, The Temporal Logic of Programs. FOCS 1977: 46-57.

 [AH01] L. de Alfaro, T.A. Henzinger, Interface automata. ESEC / SIGSOFT FSE 2001: 109-120.

 [CT12] A. Cimatti, S. Tonetta, A Property-Based Proof System for Contract-Based Design. EUROMICRO-SEAA
2012: 21-28.

 [CDT13] A. Cimatti, M. Dorigatti, S. Tonetta. OCRA: A Tool for Checking the Refinement of Temporal Contracts .
ASE 2013.

Stefano Tonetta, ASE'13 Tutorial 65

