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A tutorial on property-based and contract-based 

design of system architectures 
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 Models used for system requirements, architectural design, 
analysis, validation and verification. 

 Different system-level analysis (safety, security, 
performance, …). 

 Top-down refinement process. 

 Software/hardware co-engineering. 

 Definition of the platform and deployment. 

 Applied to embedded systems: 

o Interaction with physical world (continuous time). 

o Real-time constraints. 

o Complex interaction of many components: 

• Sensors, actuators, monitors, communication links. 
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 Formal methods 
o Formal specification languages 

• Assign models a mathematical meaning 

• Different property languages for different model semantics 

o Formal verification to prove the properties on the models. 

 Verification flow: 
o Design models translated into input for verification engine: 

• Typically a (meaningful) subset is considered 

• Automatic translation preserving semantics of properties of interest 

o Requirements formalized into properties 
• This is typically a manual process. 

o Results mapped back to the design flow. 

 This tutorial will focus on:  
o Model checking [CGP99] techniques for a wide spectrum: 

• Finite states vs. infinite states 

• Discrete time vs. hybrid/continuous-time. 

o Properties languages in the different cases. 
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 A component is a unit of composition with contractually 

specified interfaces [Szy02]. 

 Components are the constituent parts of a system 

architecture. 

 Sub-components interact through connections. 

 They are seen as black box for proper  

o Compositional verification. 

o Reuse. 

o Structural/independent refinement. 
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 Compositional verification [RBH+01]: 

1. Prove properties of the components (for example, with model checking). 

2. Combine components’ properties to prove system’s property without  looking into 
the internals of the components (sometimes reduced to validity/satisfiability check 

for composition of properties). 

 Formally: 
𝑆1 ⊨ 𝑃1,  𝑆2 ⊨ 𝑃2, … , 𝑆𝑛 ⊨ 𝑃𝑛

𝛾𝑆(𝑆1, 𝑆2, … , 𝑆𝑛) ⊨ 𝛾𝑃(𝑃1, 𝑃2, … , 𝑃𝑛)
          𝛾𝑃 𝑃1, 𝑃2, … , 𝑃𝑛 ⊨ 𝑃

𝛾𝑆 𝑆1, 𝑆2, … , 𝑆𝑛 ⊨ 𝑃
 

 

 𝛾𝑃 combines the properties depending on the connections used in 𝛾𝑆 

 E.g. synchronous case: 

𝛾𝑃 𝑃1, 𝑃2, … , 𝑃𝑛 = 𝜌𝛾𝑆 𝑃1 ∧ 𝑃2 ∧ ⋯∧ 𝑃𝑛  

      where 𝜌𝛾𝑆 is the renaming of symbols defined by the connections in 𝛾𝑆. 
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temporal logic approach. 
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A tutorial on property-based and contract-based 

design of system architectures 
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 Problem of checking if a system 
satisfies a property [CGP99]. 

 Algorithmic procedure to analyze 
Reactive Systems 
o systems with  

infinite behaviors 

o hardware, communication  
protocols, operating  
systems, controllers 

 30 years old 

 Turing Award 2007 (Clarke, 
Emerson, and Sifakis). 

 Tremendous Impact: 
o Routinely applied  

in hardware design. 

o Increasing use in the design of 
embedded systems. 

o Ideal for model-based system 
engineering. 
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 Symbolic variables 𝑉 = {𝑣1, … , 𝑣𝑛} to represent the state space. 

 Symbolic formulas used to represent: 

o Set of states: 𝜙 𝑉 ≡ 𝑠 𝑠 ⊨ 𝜙  

o Set of transitions: 𝑇 𝑉, 𝑉′ ≡ 𝑠, 𝑠′ 𝑠, 𝑠′ ⊨ 𝜙  

• Where the variables 𝑉′ = {𝑣′1, … , 𝑣′𝑛} represent next state variables. 

 A valuation s:VD used to build a formula true for exactly that 

valuation. 

o x1,y1,z5  we derive the formula x=1y=1z=5 

 Each complete assignment can be considered a state 

 A transition system is represented by: 

o The set of initial states represented by the formula 𝐼(𝑉) 

o The transition relation represented by the formula 𝑅(𝑉, 𝑉′) 
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 Symbolic algorithms search the state space 
manipulating formulas. 

 Main types of algorithms: 

o Based on fix-point: 

• Compute the pre/post-image of a set of states with quantifier 
elimination, e.g., 𝑝𝑟𝑒 𝜙 ≔ ∃𝑉′ 𝜙 ∧ 𝑇  

• Accumulate until at fix-point you get all reachable states. 

o Based on satisfiability: 

• Prove properties with a series of satisfiability checks (𝑠𝑎𝑡(𝜙) 
iff there exists 𝑠 such that 𝑠 ⊨ ϕ). 

o Based on abstraction: 

• E.g. predicate abstraction (partition states according to 
predicates). 

• Properties proved on abstract system hold also on the 
original system. 
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 Bounded Model Checking (BMC) [BCC+99] 
o Check 𝑠𝑎𝑡 𝜙𝑘  where ϕ𝑘 is sat iff there exists a path of 𝑀 of length up to 𝑘 

violating the property 𝑃.   

o Focused on finding errors. 

 Induction 
o Base case: check if the initial state satisfies 𝑃 (invariant) 

o Inductive case: check if the transitions preserve the invariant. 

 K-induction [SSS00] 
o Base case: check if all initial path satisfies 𝑃 (invariant) up to 𝑘 steps. 

o Inductive case: check if every path of 𝑘 + 1 steps preserve the invariant. 

 IC3 [Bra11] 
o Keeps sequence of relative inductive invariants (frames). 

o Use counterexamples to strengthen the frames. 

 Also combined with abstraction: 
o Interpolation-based abstraction [McM03] 

• Unsat BMC used to over-approximate reachable states.  

o Implicit abstraction [Ton09] 
• SAT-based algorithms on abstract state space (without computing explicitly it). 
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 Previous algorithms assume to have a solver for the 
satisfiability of formulas. 

 First developed for finite-state systems with the support of 
SAT solvers. 

 Satisfiability Modulo Theory (SMT): 

o Satisfiability for decidable fragments of first-order logic. 

o SAT solver used to enumerate Boolean models. 

o Integrated with decision procedure for specific theories, e.g., theory 
of real linear arithmetic. 

 SAT solvers substituted by SMT solvers. 

 Search algorithms applied to infinite-state systems 
(although in general undecidable). 
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 Hybrid systems encoded into symbolic transition systems 

with SMT constraints [CMT11,CMT13]. 

 Reals used to represent time and continuous variables. 

 Transitions are either  

o Discrete: time does not change, state variables change according to 

transition relation 𝜙 𝑉, 𝑉′  

o Timed: time elapses, discrete variables do not change, continuous 

variables evolve according to the flow law 

• E.g., the flow condition  𝑥 < 𝑎 is encoded into  

𝑥′ − 𝑥 < 𝑎 𝑡′ − 𝑡  where 𝑡 is the time variable. 

Stefano Tonetta, ASE'13 Tutorial 17 



A tutorial on property-based and contract-based 

design of system architectures 
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 Properties are expressions in a mathematical logic using 

symbols of the system description. 

 Used to formalize requirements. 

 Also defined as assertions on the system’s behavior. 

 Problems: 

o Analysis: find the properties of a system. 

o Verification: check if the system satisfies the properties. 

o Validation: check if we are considering the right properties. 

o Synthesis: construct a system that satisfies the properties. 
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 Conceived by Pnueli in 1977 [Pnu77] 

 Linear models 
o State sequences (traces). 

 Built over set of atomic propositions 
AP. 

 LTL formulas are the smallest set of 
formulas such that: 
o any atomic proposition p AP is an LTL 

formula; 

o if p and q are LTL formulas, then p, 
pq, pq are LTL formulas; 

o if p and q are LTL formulas, then X p, G 
p, F p, and [p U q] are LTL formulas. 

 Semantics defined for every trace, for 
every 𝑖 ∈ ℕ . 

  𝑀 ⊨ 𝜙 iff 𝑀,𝜎, 0 ⊨ 𝜙 for every trace 
𝜎 of 𝑀. 
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 𝐺𝑝 “always p” – invariant 

 𝐺(𝑝 → 𝐹𝑞) “p is always followed by q” - reaction 

 𝐺(𝑝 → 𝑋𝑞) “whenever p holds, q is set to true” – immediate 

reaction 

 𝐺𝐹𝑝 “infinitely many times p” – fairness 

 𝐹𝐺𝑝 “eventually permanently p” 

 𝐺(𝑝 → 𝑞𝑈𝑟 ) 
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 𝐺 𝑟𝑒𝑞𝑢𝑒𝑠𝑡 → 𝐹 𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑑  

 𝐺 𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑑 → 𝐹(𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑑)  

 𝐺 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑑 → 𝑋 𝑔𝑟𝑎𝑛𝑡  

From which we can entail 

 𝐺(𝑟𝑒𝑞𝑢𝑒𝑠𝑡 → 𝐹 𝑔𝑟𝑎𝑛𝑡 ) 
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 Past operators 

o 𝑌𝜙, in the previous state 𝜙, dual of 𝑋 

o 𝑂𝜙, in the past once 𝜙, dual of 𝐹 

o 𝐻𝜙, in the past always 𝜙, dual of 𝐺 

o 𝜙1𝑆𝜙2, in the past 𝜙1 since 𝜙2, dual of 𝑈 
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 RELTL enriches LTL with regular expressions: 

o Suffix implication: 𝑟 ∣→ 𝜙 means that every finite sequence 

matching 𝑟 is followed by a suffix satisfying 𝜙. 

o Suffix conjunction: 𝑟 ⋄→ 𝜙 means that there exists a finite 

sequence matching 𝑟 and followed by a suffix satisfying 𝜙. 

 Example: 

o ¬𝑝 ∗ ; 𝑝 ∗ 3 → 𝐹𝑞 

o 𝐺( 𝑟𝑒𝑞𝑢𝑒𝑠𝑡; 𝑏𝑢𝑠𝑦 ∗ ; 𝑔𝑟𝑎𝑛𝑡 → 𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒) 
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 Rich language to specify assertions on hardware design. 

 Include RELTL. 

 Increase usability with 

o Syntactic sugar 

o English words instead of math symbols: 

• “always” (𝐺) 

• “never” (𝐺¬) 

• “eventually” (𝐹) 

• “next” (𝑋)  
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 Use first-order predicates instead of propositions: 

o 𝐺 𝑥 ≥ 𝑎 ∧ 𝑥 ≤ 𝑏  

o 𝐺𝐹 𝑥 = 𝑎 ∧ 𝐺𝐹 𝑥 = 𝑏  

 Predicates interpreted according to specific theory T 

(henceforth, only used reals). 

 “next” to express changes/transitions: 

o 𝐺 𝑛𝑒𝑥𝑡 𝑥 = 𝑥 + 1  

o 𝐺(𝑛𝑒𝑥𝑡 𝑎 − 𝑎 ≤ 𝑏) 
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 𝐺(𝑝 → 𝐹≤3𝑞) “p is followed by q within 3 time units” 

 𝐺(𝑝 → 𝐺≤2𝑞) “Whenever p holds, q holds in the following 

two time units” 

 𝐺(𝑝 → ¬𝑞𝑈≥1𝑞 ) “p is followed by q but only after 1 time 

unit” 
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 𝐺(𝑑𝑒𝑟 𝑥 < 2) “The derivative of x is always less than 2” 

 𝐺(𝑎 → 𝑑𝑒𝑟 𝑥 = 0) “Whenever a holds, the derivative of x 

is zero” 

 𝐺 𝑎 → 𝑏𝑈𝑑𝑒𝑟 𝑥 ≤ 5  “Whenever a holds, b remain true 

until the derivative of x is less or equal to 5”. 
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𝐺(𝑠𝑝𝑒𝑒𝑑 > 𝑙𝑖𝑚𝑖𝑡 → 
𝐹(𝑤𝑎𝑟𝑛𝑖𝑛𝑔)) 
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 Human-readable language for HRELTL. 

 Controlled natural language expressions. Examples: 

o “always” (𝐺) 

o “in the future” (𝐹) 

o “and” (∧) 

 Validated in the EuRailCheck project focus on the 
formalization and validation of ETCS requirements. 

o Example: “The train trip shall issue an emergency brake command, 
which shall not be revoked until the train has reached standstill and 
the driver has acknowledged the trip.“ 

o Formalized into: “always (train_trip implies 
(emergency_brake_command until (der(train_location)=0 and 
driver_acknowledges_trip)))” 
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A tutorial on property-based and contract-based 

design of system architectures 
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 A component has 

o A syntactic interface 

o Optionally, an internal structure. 

o A behavior. 

o An environment. 

o Properties. 
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 A component interface defines boundary of the interaction 

between the component and its environment. 

 Consists of: 

o Set of input and output ports (syntax) 

• Ports represent visible data and events exchanged with environment. 

o Set of traces (semantics) 

• Traces represent the behavior, history of events and values on data ports. 
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Component 

 A component has an internal structure. 

 Architecture view: 
o Subcomponents 

o Inter-connections 

o Delegations 

 State-machine view: 
o Internal state 

o Internal transitions 

o Language over the ports 
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 𝐼𝑆: input ports of component 𝑆 

 𝑂𝑆: output ports of 𝑆 

 𝑉𝑆 = 𝐼𝑆 ∪ 𝑂𝑆: all ports of 𝑆 

 𝑇𝑟(𝑋) traces over 𝑋 ⊆ 𝑉𝑆 (sequence of assignments to 𝑋) 

 State machine 𝐼𝑚𝑝 implementation of 𝑆 iff L(𝐼𝑚𝑝) ⊆
𝑇𝑟 𝑉𝑆  

 𝑀 can be associated with 𝜇𝐼𝑚𝑝:  𝑇𝑟 𝐼𝑆 → 2𝑇𝑟 𝑂𝑆  such that 

𝜇𝐼𝑚𝑝 𝜎𝑖 = {𝜎𝑜 ∣ 𝜎𝑖 × 𝜎𝑜 ∈ 𝐿(𝐼𝑚𝑝)} 
o Input trace mapped to a set of output traces 

o “set” to consider non determinism 

o Empty set corresponds to rejected input trace 
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 State machine 𝐸𝑛𝑣 environment of 𝑆 iff L(𝐸𝑛𝑣) ⊆ 𝑇𝑟(𝐼𝑆) 

 Compatibility of implementation with environment (e.g., for 

reuse): 

o Trace-based (black-box) view: 

• 𝐼𝑚𝑝 must accept any trace of 𝐸𝑛𝑣 (i.e., L(𝐸𝑛𝑣) ⊆ 𝜎 𝜇𝐼𝑚𝑝 𝜎 ≠ ∅  ) 

o State-based (glass-box) view: 

• For any reachable state of 𝐼𝑚𝑝 × 𝐸𝑛𝑣, for any input transition of 𝐸𝑛𝑣, 

there exists a matching transition of 𝐼𝑚𝑝.  

• As in interface theory [AH01] (note that 𝐼𝑚𝑝 × 𝐸𝑛𝑣 is a closed system). 
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 Components are composed to create composite components. 

 Different kind of compositions: 

o Synchronous, 

o Asynchronous, 

o Synchronizations: 

• Rendez-vous vs. buffered; 

• Pairwise, multicast, broadcast, multicast with a receiver 

 Connections map (general rule of architecture languages): 

o Input ports of the composite component 

o Output ports of the subcomponents 

Into 

o Output ports of the composite component 

o Input ports of the subcomponents. 
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 A component is actually a component type. 

 A system architecture is an instance of a composite 

component. 

 It defines a tree of component instances. 
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 Properties of the component and its environment. 

 Can be seen as assertion for component interfaces. 

 Contracts used to characterize the correctness of component 
implementations and environments. 

 Typically, properties for model checking have a “god” view of the 
system internals.  

 For components instead: 

o Limited to component interfaces. 

o Structure into assumptions and guarantees. 

 Contracts for OO programing are pre-/post-conditions [Meyer, 
82]. 

 For systems, assumptions correspond to pre-conditions, 
guarantees correspond to post-conditions. 
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 Assertions used to represent sets of traces over the component 
ports: 
o 𝜙(𝑉) assertion over variables 𝑉 

o 〈 𝜙 〉 ⊆ 𝑇𝑟 𝑉  semantics of 𝜙 

 A contract of component 𝑆 is a pair 〈𝐴, 𝐺〉 of assertions over 𝑉𝑆 
o A is the assumption,  

o G is the guarantee. 

 𝐸𝑛𝑣 is a correct environment iff L(𝐸𝑛𝑣) ⊆ 〈 𝐴 〉 
 𝐼𝑚𝑝 is a correct implementation iff L(𝐼𝑚𝑝) ∩ 〈 𝐴 〉 ⊆ 〈 𝐺 〉 
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assume: 

  always (Pedal_Pos1 iff Pedal_Pos2)  

guarantee: 

  always ( (Pedal_Pos1 or Pedal_Pos2)  

   implies (time_until(Brake_Line) <=10 )); 
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 The set of contracts 𝐶𝑖  refines 𝐶 with the connection 𝛾 ( 𝐶𝑖 ≼𝛾 𝐶) iff 

for all correct implementations 𝐼𝑚𝑝𝑖 of 𝐶𝑖 and correct environment 𝐸𝑛𝑣 
of 𝐶: 

1. The composition of {𝐼𝑚𝑝𝑖} is a correct implementation of C. 

2. For all k, the composition of 𝐸𝑛𝑣 and 𝐼𝑚𝑝𝑖 𝑖≠𝑘 is a correct environment of 𝐶𝑘. 

 Verification problem:  

o check if a given refinement is correct (independently from implementations). 
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 Given C1=<1,1>, … , C1=<n,n>, C=<,> 

 Proof obligations for 𝐶𝑖 ≼ 𝐶: 

o 𝛾  𝛼𝑗 → 𝛽𝑗1≤𝑗≤𝑛 → 𝛼 → 𝛽  

o 𝛾  𝛼𝑗 → 𝛽𝑗2≤𝑗≤𝑛 → 𝛼 → 𝛼1  

o … 

o 𝛾  𝛼𝑗 → 𝛽𝑗1≤𝑗≤𝑛,𝑗≠𝑖 → 𝛼 → 𝛼𝑖  

o … 

o 𝛾  𝛼𝑗 → 𝛽𝑗1≤𝑗≤𝑛−1 → 𝛼 → 𝛼𝑛  

 

 Theorem: 𝐶𝑖 ≼𝛾 𝐶 iff the proof obligations are valid. [CT12] 
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 Weak vs. strong assumptions (both important): 

o Weak assumptions  

• Define the context in which the guarantee is ensured 

• As in assume-guarantee reasoning 

• Different assume-guarantee pairs may have inconsistent assumptions 

(if x>0 then …, if x<0 then …) 

o Strong assumptions 

• Define properties that must be satisfied by the environment. 

• Original idea of contract-based design. 

• If not satisfied, the environment can cause a failure (division by zero, 

out of power, collision). 
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 Correspond to one direction of the contract refinement. 

 Many works focused on finding the right 

assumption/guarantee. 

 E.g. how to break circularity? 

o 𝐺 𝐴 → 𝐵 ∧ 𝐺 𝐵 → 𝐴 ⇒ 𝐺(𝐴 ∧ 𝐵) is false 

o Induction-based mechanisms 

o 𝐵 ∧ 𝐺 𝐴 → 𝑋𝐵 ∧ 𝐴 ∧ 𝐺 𝐵 → 𝑋𝐴 ⇒ 𝐺(𝐴 ∧ 𝐵) is true 

 Note they are structural ways to prove the property-based 

refinement. 
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 OCRA=Othello Contract Refinement Analysis [CDT13] 

 Contracts’ assertions specified in Othello. 

 Textual representation of the architecture. 

 Built on top of nuXmv for infinite-state model checking. 

 Integrated with CASE tools: 

o AutoFocus3 

• Developed by Fortiss. 

• For synchronous system architectures.  

o CHESS 

• Developed by Intecs. 

• For SysML and UML modeling. 

 One of the few tools supporting contract-based design for embedded 
systems. 

 Publicly available (for non-commercial purposes) at 

https://es.fbk.eu/tools/ocra 
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 Rich component interfaces to specify: 

o Input/output ports 

o Data/Event ports. 

o Including real-time and safety aspects.  

 Contracts in temporal logics. 

 Temporal formulas used to characterize set of traces over 

the ports of components. 
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COMPONENT system 

… 

 

COMPONENT A 

… 

 

COMPONENT B 

… 
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COMPONENT system 

 INTERFACE 

  INPUT PORT x: continuous; 

  OUTPUT PORT a: boolean;  

 … 

 REFINEMENT 

 … 

 

COMPONENT A 

… 

 

COMPONENT B 

… 
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COMPONENT simple system 

 INTERFACE 

  INPUT PORT x: continuous; 

  OUTPUT PORT v: boolean; 

 

  CONTRACT v_correct 

   assume: always x>=0; 

   guarantee: always (x=0 implies v);  

 

 REFINEMENT 

 … 

 

COMPONENT A 

… 

 

COMPONENT B 

… 
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COMPONENT simple system 

 INTERFACE 

  INPUT PORT x: continuous; 

  OUTPUT PORT v: boolean; 

 

  CONTRACT v_correct 

   assume: always x>=0; 

   guarantee: always (x=0 implies v);  

 

 REFINEMENT 

  SUB a: A; 

  SUB b: B; 

  

  CONNECTION a.x := x; 

  CONNECTION b.y := a.v; 

  CONNECTION v:= b.v; 

 … 
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COMPONENT simple system 

 INTERFACE 

  INPUT PORT x: continuous; 

  OUTPUT PORT v: boolean; 

 

  CONTRACT v_correct 

   assume: always x>=0; 

   guarantee: always (x=0 implies v);  

 

 REFINEMENT 

  SUB a: A; 

  SUB b: B; 

  

  CONNECTION a.x := x; 

  CONNECTION b.vi := a.v; 

  CONNECTION v:= b.vo; 

 

  CONTRACT v_correct REFINEDBY a.v_correct, b.pass; 
52 
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System 

A 

B 

v_correct 

pass 

x v 

v_correct 

x x v 

vi 

vo v 



 LTL operators with the following syntax: 

o “always” 𝐺 

o “in the future” 𝐹 

o “until” 𝑈 

o “then” 𝑋 

o “historically” 𝐻 

o “in the past” 𝑂 

o “since” 𝑆 

o “previously” 𝑌 
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 Port types are either 

o NuSMV types: “boolean”, enumeratives, ... 

o nuXmv additional types: “real”, “integer”, … 

o “continuous”, i.e. real-value ports evolving continuously in time. 

o “event”, i.e. boolean-value port that is assigned only on discrete 

transitions. 

 Atomic formulas may be: 

o Boolean variables. 

o Equalities. 

o Arithmetic predicates over integer, real, and continuous terms. 
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 Special function symbols: 

o “der” denoting the derivative of a continuous variable (e.g., “der(x)=0”). 

o “next” denoting the next value after a discrete change (e.g. “next(x)=x+1”). 

o “time_until” used to express constraints on the time to the next occurrence of 
an event: 

• “time_until(e)<=2” means ¬𝑒 𝑈≤2𝑒 

 Syntactic sugar: 

o fall(x) means “x=true and next(x)=false” 

o rise(x) means “x=false and next(x)=true” 

o change(x) means “next(x)!=x”  

 Important warning: 

o The time model is hybrid with continuous evolution. 

o What does “next” mean when time elapses? 

o In OCRA/Othello/HRELTL, “next” forces a discrete step: 

• “always ((der(timer)=1) and (timer=timeout implies next(timer)=0))”  
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 ocra_check_syntax 

 ocra_check_refinement 

 ocra_check_consistency 

 ocra_check_implementation 

 ocra_check_receptiveness 

 

 Typical script: 
o set verbose_level 1 

o set on_failure_script_quits 1 

o set pp_list cpp 

o ocra_check_syntax -i SenseSpacecraftRate.oss 

o ocra_check_refinement 

o quit 

 

 Call: ocra –source SenseSpacecraftRate.cmd 
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 OCRA is parametrized by the logic. 

 The expressions can be restricted and interpreted as 

discrete-time LTL or hybrid LTL. 

 Default is hybrid. 

 Set discrete-time to switch to LTL. 
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 For every component, for every refined contract, check 

refinement. 

 For every proof obligation, check its validity: 

o [OK] if valid 

o [BOUND OK] if no counterexample found up to k 

o [FAIL] if found counterexample 
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 Contract-based design powerful 

o For property refinement 

o Safety analysis 

 Temporal logic is suitable for component contracts. 

 Contract framework parametrized by the logic. 

 SMT-based model checking used to reason with expressive 

properties. 

 OCRA tool support. 
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 Basic concepts on contract-based design for embedded systems: 

o Albert Benveniste, Benoît Caillaud, Alberto Ferrari, Leonardo Mangeruca, 
Roberto Passerone, and Christos Sofronis. Multiple Viewpoint Contract-Based 
Specification and Design. FMCO 2007. 

o Manfred Broy: Towards a Theory of Architectural Contracts: - Schemes and 
Patterns of Assumption/Promise Based System Specification. Software and 
Systems Safety - Specification and Verification 2011: 33-87 

o Alberto Sangiovanni-Vincentelli, Werner Damm and Roberto Passerone. Taming 
Dr. Frankenstein: Contract-Based Design for Cyber-Physical Systems. European 
Journal of Control, 18(3):217-238, 2012. 

o Albert Benveniste, Benoît Caillaud, Dejan Nickovic, Roberto Passerone, Jean-
Baptiste Raclet, Philipp Reinkemeier, Alberto L. Sangiovanni-Vincentelli, Werner 
Damm, Thomas A. Henzinger, and Kim G. Larsen. Contracts for Systems Design. 
Rapport de recherche RR-8147, INRIA, Nov. 2012.  

 META program and AGREE tool by Cofer and colleagues. 

o Also on system architecture with temporal logics for assume-guarantee 
reasoning. 
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