Property-Based and Contract-Based
Design of System Architectures

Stefano Tonetta
tonettas@fbk.eu
Tutorial of ASE’'13

EMBEDDED
SYSTEM

(redits

s Joint work with
o Alessandro Cimatti
o Michele Dorigatti
o Pietro Braghieri

s Supported by the European ARTEMIS SafeCer project.

7
Safe iCe;ﬁ
R an?

Stefano Tonetta, ASE'13 Tutorial 2

o & w N PE

Introduction and motivations

Infinite-state model checking

Properties specification languages
Contract-based design with temporal logics
OCRA tool support

Stefano Tonetta, ASE'13 Tutorial

First Part:
Introduction and motivations

A tutorial on property-based and contract-based
design of system architectures

Stefano Tonetta, ASE'13 Tutorial

Model-based system engineering

s Models used for system requirements, architectural design,
analysis, validation and verification.

s Different system-level analysis (safety, security,
performance, ...).

s Top-down refinement process.
s Software/hardware co-engineering.
s Definition of the platform and deployment.

s Applied to embedded systems:
o Interaction with physical world (continuous time).
o Real-time constraints.

o Complex interaction of many components:
* Sensors, actuators, monitors, communication links.

Stefano Tonetta, ASE'13 Tutorial 5

Formal methods as back-end

so Formal methods

o Formal specification languages
* Assign models a mathematical meaning
* Different property languages for different model semantics

o Formal verification to prove the properties on the models.

so Verification flow:

o Design models translated into input for verification engine:

* Typically a (meaningful) subset is considered

* Automatic translation preserving semantics of properties of interest
o Requirements formalized into properties

* This is typically a manual process.
o Results mapped back to the design flow.

so This tutorial will focus on:

o Model checking [CGP99] techniques for a wide spectrum:
* Finite states vs. infinite states
* Discrete time vs. hybrid/continuous-time.

o Properties languages in the different cases.

Stefano Tonetta, ASE'13 Tutorial 6

(omponent-based design

s A component is a unit of composition with contractually
specified interfaces [Szy02].

% Components are the constituent parts of a system
architecture.

s Sub-components interact through connections.

s They are seen as black box for proper
o Compositional verification.
o Reuse.
o Structural/independent refinement.

Stefano Tonetta, ASE'13 Tutorial 7

Compositional verification techniques

so Compositional verification [RBH+01]:
1. Prove properties of the components (for example, with model checking).

2. Combine components’ properties to prove system’s property without looking into
the internals of the components (sometimes reduced to validity/satisfiability check
for composition of properties).

so Formally:
Sl |=P1, SZ |:P2,...,Sn IZPTL
P, P, .. ,P)EP
YS(Sl;SZ; '--;Sn) =)/P(Pl, Pz, ...,Pn)]/P(1E2 Tl)

)/S(Sl,Sz, ...,Sn) =P

so Yp combines the properties depending on the connections used in y¢

so E.g. synchronous case:
VP(Pl;PZ;---;Pn) = pyS(Pl A P, A"'/\Pn)

where Py is the renaming of symbols defined by the connections in ys.

Stefano Tonetta, ASE'13 Tutorial 8

Contract-based approach

1. Step-wise refinement of
components.

2. Compositional

_ J verification.

3. Proper reuse of
components.

Main mgredients

Model

checking
Property

1anguages

Component-
based
systems

Support to contracts: a
temporal logic approach.

Stefano Tonetta, ASE'13 Tutorial

10

Second Part:
Infinite-state model checking

A tutorial on property-based and contract-based
design of system architectures

Stefano Tonetta, ASE'13 Tutorial

Model checking

s Problem of checking if a system
satisfies a property [CGP99].

s Algorithmic procedure to analyze
Reactive Systems
temporal formula

o systems with

infinite behaviors yes!

o hardware, communication \ /
protocols, operating

systems, controllers Model
s» 30 years old Checker
Turing Award 2007 (Clarke, et N\

Emerson, and Sifakis). C)T;Qq not
e

s Tremendous Impact:

o Routinely applied
in hardware design.

o Increasing use in the design of
embedded systems.

o ldeal for model-based system
engineering.

finite-state model q

counterexample

Stefano Tonetta, ASE'13 Tutorial 12

29

Symbolic representation

Symbolic variables V = {v4, ..., v,} to represent the state space.

Symbolic formulas used to represent:
o Setofstates: p(V)={s|sE¢}
o Set of transitions: T(V, V') = {(s,s") | (s,s") E ¢ }
* Where the variables V' = {v'4, ..., v',;} represent next state variables.
A valuation s:V—D used to build a formula true for exactly that
valuation.
o (X«1,y«1,2<-5) we derive the formula x=1Ay=1Az=5

Each complete assignment can be considered a state

A transition system is represented by:
o The set of initial states represented by the formula (V)
o The transition relation represented by the formula R(V,V")

Stefano Tonetta, ASE'13 Tutorial

13

Symbolic algorithms

s Symbolic algorithms search the state space
manipulating formulas.

s Main types of algorithms:

o Based on fix-point:
* Compute the pre/post-image of a set of states with quantifier
elimination, e.g., pre(¢) =3V (p AT)
* Accumulate until at fix-point you get all reachable states.
o Based on satisfiability:

* Prove properties with a series of satisfiability checks (sat(¢)
iff there exists s such that s & ¢).

o Based on abstraction:

* E.g. predicate abstraction (partition states according to
predicates).

* Properties proved on abstract system hold also on the
original system.

Stefano Tonetta, ASE'13 Tutorial

29

29

29

29

29

SAT-based algorithms

Bounded Model Checking (BMC) [BCC+99]

o Check sat(¢y) where ¢y, is sat iff there exists a path of M of length up to k
violating the property P.

o Focused on finding errors.
Induction

o Base case: check if the initial state satisfies P (invariant)

o Inductive case: check if the transitions preserve the invariant.
K-induction [SSSO0O0]

o Base case: check if all initial path satisfies P (invariant) up to k steps.

o Inductive case: check if every path of k 4+ 1 steps preserve the invariant.
IC3 [Brall]

o HKeeps sequence of relative inductive invariants (frames).
o Use counterexamples to strengthen the frames.

Also combined with abstraction:

o Interpolation-based abstraction [McMO3]
Unsat BMC used to over-approximate reachable states.
o Implicit abstraction [Ton09]
* SAT-based algorithms on abstract state space (without computing explicitly it).

Stefano Tonetta, ASE'13 Tutorial

15

From SAT to SMT

s Previous algorithms assume to have a solver for the
satisfiability of formulas.

s First developed for finite-state systems with the support of
SAT solvers.

s Satisfiability Modulo Theory (SMT):

o Satisfiability for decidable fragments of first-order logic.
o SAT solver used to enumerate Boolean models.

o Integrated with decision procedure for specific theories, e.g., theory
of real linear arithmetic.

s SAT solvers substituted by SMT solvers.

s Search algorithms applied to infinite-state systems
(although in general undecidable).

Stefano Tonetta, ASE'13 Tutorial 16

SMT-based hybrid systems

s Hybrid systems encoded into symbolic transition systems
with SMT constraints [CMT11,CMT13].

s Reals used to represent time and continuous variables.

so Transitions are either

o Discrete: time does not change, state variables change according to
transition relation ¢p(V, V")

o Timed: time elapses, discrete variables do not change, continuous
variables evolve according to the flow law

* E.g., the flow condition x < a is encoded into
x" —x < a(t' —t) where t is the time variable.

Stefano Tonetta, ASE'13 Tutorial 17

Third Part:
Property specification languages

A tutorial on property-based and contract-based
design of system architectures

Stefano Tonetta, ASE'13 Tutorial

Properties

s Properties are expressions in a mathematical logic using
symbols of the system description.

s Used to formalize requirements.
s Also defined as assertions on the system’s behavior.

so Problems:
o Analysis: find the properties of a system.
o Verification: check if the system satisfies the properties.
o Validation: check if we are considering the right properties.
o Synthesis: construct a system that satisfies the properties.

Stefano Tonetta, ASE'13 Tutorial 19

Properties, traces, and logic

A model
(trace)

Requirement 1 Formalized into {Rsis SRAA R Semantics>

Requirement 2 Formalized into fmASUElaA0p Semantics>

A model

of both
Stefano Tonetta, ASE'13 Tutorial v

Liear Temporal Logic

3

Conceived by Pnueli in 1977 [Pnu77]

Linear models
o State sequences (traces). finally p

s Built over set of atomic propositions

AP. oo o oo ofdo

so LTL formulas are the smallest set of Fp
formulas such that:

o any atomic proposition p AP is an LTL
formula;

o if pand q are LTL formulas, then —p,
PAQ, pvq are LTL formulas; | . o o o oo
o if pand qare LTL formulas, then X p, G
p, Fp,and [p Uq] are LTL formulas. Xp
s Semantics defined for every trace, for
everyi € N,

o M E ¢ iff M,0,0 &= ¢ for every trace
o of M.

3

next p

Stefano Tonetta, ASE'13 Tutorial 21

LTL examples

s Gp “always p” - invariant
o G(p = Fq) “p is always followed by q” - reaction

so G(p — Xq) “whenever p holds, q is set to true” - immediate
reaction

s GFp “infinitely many times p” - fairness
so FGp “eventually permanently p”
o G(p - (qUr))

Stefano Tonetta, ASE'13 Tutorial 22

Simple entailment example

so G(request — F(received))
so G(received — F(processed))
5 G(processed - X (grant))

From which we can entail
s> G(request —» F(grant))

Stefano Tonetta, ASE'13 Tutorial 23

Past operators

s Past operators
o Y@, in the previous state ¢, dual of X
o 0@, in the past once ¢, dual of F
o Hdg, in the past always ¢, dual of G
o ¢$1S¢,, in the past ¢, since ¢,, dual of U

Stefano Tonetta, ASE'13 Tutorial 24

Regular expressions

s> RELTL enriches LTL with regular expressions:

o Suffix implication: {r} |- ¢ means that every finite sequence
matching r is followed by a suffix satisfying ¢.

o Suffix conjunction: {r} o— ¢ means that there exists a finite
sequence matching r and followed by a suffix satisfying ¢.

s« Example:
o {{-p}Lip}lx 31} - Fq

o G({request; busy|*]; grant} - response)

Stefano Tonetta, ASE'13 Tutorial 25

Property specification language

s Rich language to specify assertions on hardware design.
so Include RELTL.

s Increase usability with
o Syntactic sugar
o English words instead of math symbols:
« “always” (G)
* “never” (G-)

* “eventually” (F)
* “next” (X)

Stefano Tonetta, ASE'13 Tutorial 26

From finite to infinite

s Use first-order predicates instead of propositions:
o G(x=aAx<b)
o GF(x =a) AGF(x =b)
s Predicates interpreted according to specific theory T
(henceforth, only used reals).

so “‘next” to express changes/transitions:
o G(next(x) =x+1)
o G(next(a) —a <b)

Stefano Tonetta, ASE'13 Tutorial 27

Metric Temporal Logic

s G(p = F<3q) “p is followed by g within 3 time units”

o G(p = G<2q) “Whenever p holds, g holds in the following
two time units”

s> G(p = (~qUs1q)) “p is followed by g but only after 1 time
unit”

STATE
|
|
|

TIME

Stefano Tonetta, ASE'13 Tutorial 28

Hybrid RELTL (HRELTL)

-
so G(der(x) < 2) “The derivative of x is always less than 2”

s> G(a = der(x) = 0) “Whenever a holds, the derivative of x
IS zero”

o G(a - (bUder(x) < 5)) “Whenever a holds, b remain true
until the derivative of x is less or equal to b”.

peed

— _w — — G(speed > limit -
F(warning))

I [] —Wa Enm [] I]

STATE
|

TIME

Stefano Tonetta, ASE'13 Tutorial 29

Othello

"
s Human-readable language for HRELTL.

s Controlled natural language expressions. Examples:
o “always” (G)
o “in the future” (F)
o “and” (A)
s Validated in the EuRailCheck project focus on the
formalization and validation of ETCS requirements.

o Example: “The train trip shall issue an emergency brake command,
which shall not be revoked until the train has reached standstill and
the driver has acknowledged the trip.”

o Formalized into: “always (train_trip implies
(emergency_brake_command until (der(train_location)=0 and
driver_acknowledges_trip)))”

Stefano Tonetta, ASE'13 Tutorial 30

Fourth Part:
Contract-based design with temporal logics

A tutorial on property-based and contract-based
design of system architectures

Stefano Tonetta, ASE'13 Tutorial

(omponent

s« A component has
o A syntactic interface
o Optionally, an internal structure.
o A behavior.
o An environment.
o Properties.

Stefano Tonetta, ASE'13 Tutorial 32

Black-box component interface

Component

s A component interface defines boundary of the interaction
between the component and its environment.

s Consists of:
o Set of input and output ports (syntax)
* Ports represent visible data and events exchanged with environment.

o Set of traces (semantics)

* Traces represent the behavior, history of events and values on data ports.
Stefano Tonetta, ASE'13 Tutorial 33

Glass-box component structure

5 N—> 5
o o
I= —> 5
@)
Mﬁ
% A component has an internal structure.
so Architecture view:
o Subcomponents
o Inter-connections
o Delegations ~— p—
s State-machine view: > s
o Internal state
. —_— —>
o Internal transitions
o Language over the ports —y —>
Stefano Tonetta, ASE'13 Tutorial 34

(omponent implementation

s Ig: input ports of component S

so Og: output ports of S

so Vs = Is U Og: all ports of S

so Tr(X) traces over X € Vs (sequence of assignments to X)

so State machine Imp implementation of S iff L(Imp) <
Tr(Vs)

s> M can be associated With piy,: Tr(ls) — 277(0s) such that
.ulmp(a-i) = {0, | 0; X 0, € L(Imp)}

o Input trace mapped to a set of output traces

o “set” to consider non determinism
o Empty set corresponds to rejected input trace

Stefano Tonetta, ASE'13 Tutorial 35

(omponent environment

so State machine Env environment of S iff L(Env) € Tr(ls)

s Compatibility of implementation with environment (e.g., for
reuse):
o Trace-based (black-box) view:
- Imp must accept any trace of Env (i.e., L(Env) S {0 | pymp(0) =0 })
o State-based (glass-box) view:

* For any reachable state of Imp X Env, for any input transition of Env,
there exists a matching transition of Imp.

* As in interface theory [AHO1] (note that Imp X Env is a closed system).

Stefano Tonetta, ASE'13 Tutorial 36

Composite components and connections

s Components are composed to create composite components.

s Different kind of compositions:
o Synchronous,
o Asynchronous,
o Synchronizations:
* Rendez-vous vs. buffered;
* Pairwise, multicast, broadcast, multicast with a receiver
s Connections map (general rule of architecture languages):
o |Input ports of the composite component
o QOutput ports of the subcomponents
Into
o QOutput ports of the composite component
o |Input ports of the subcomponents.

Stefano Tonetta, ASE'13 Tutorial 37

System architecture

s A component is actually a component type.

s A system architecture is an instance of a composite
component.

s |t defines a tree of component instances.

Stefano Tonetta, ASE'13 Tutorial 38

Contracts

0
s Properties of the component and its environment.
s Can be seen as assertion for component interfaces.

s Contracts used to characterize the correctness of component
implementations and environments.

s Typically, properties for model checking have a “god” view of the
system internals.
s For components instead:
o Limited to component interfaces.
o Structure into assumptions and guarantees.
s Contracts for OO programing are pre-/post-conditions [Meyer,
82].
s For systems, assumptions correspond to pre-conditions,
guarantees correspond to post-conditions.

Stefano Tonetta, ASE'13 Tutorial 39

Trace-based contracts

-
s Assertions used to represent sets of traces over the component
ports:

o ¢ (V) assertion over variables V
o {({¢)) € Tr(V) semantics of ¢

s A contract of component S is a pair (4, G) of assertions over Vs
o Ais the assumption,
o G isthe guarantee.

so Emv is a correct environment iff L(Env) € ((4))
s» Imp is a correct implementation iff L(Imp) N ((4)) € ((G))

Assumption Behaviors Guarantee

L R 2

Output

Component

Input

Stefano Tonetta, ASE'13 Tutorial 40

Trace-based contract refinement

= The set of contracts {C;} refines C with the connection y ({C;} <, C) iff

for all correct implementations Imp; of C; and correct environment Env
of C:

1. The composition of {Imp;} is a correct implementation of C.
2. Forall k, the composition of Env and {Imp,},. is a correct environment of Cj.

s Verification problem:
o check if a given refinement is correct (independently from implementations).

C
Component

41

Proof obligations for contract refinement

so Given Cl=<al,1>, ..., C1=<an,pn>, C=<a,B3>
s> Proof obligations for {C;} < C:

((1Sj$n(aj - ,31)) - (a - ,8))

((zstn(“j - ,3])) - (a - a1))

©)

~<

O
~<

O .

©)
~<

(

N\
N\
/\1sjsn,j¢i(aj - 'BJ)) - (a- ai))
N\

©)
~<

(
((1sj5n—1(aj - 'BJ)) - (a - an))

s> Theorem: {C;} <y C iff the proof obligations are valid. [CT12]

Stefano Tonetta, ASE'13 Tutorial 42

Weak vs. strong assumptions

s Weak vs. strong assumptions (both important):

o Weak assumptions
* Define the context in which the guarantee is ensured
* As in assume-guarantee reasoning
« Different assume-guarantee pairs may have inconsistent assumptions
(if x>0 then ..., if x<O then ...)
o Strong assumptions
* Define properties that must be satisfied by the environment.
* QOriginal idea of contract-based design.

* If not satisfied, the environment can cause a failure (division by zero,
out of power, collision).

Stefano Tonetta, ASE'13 Tutorial 43

Assume-guaraniee reasoning

s Correspond to one direction of the contract refinement.

s Many works focused on finding the right
assumption/guarantee.
s E.g. how to break circularity?
o (G(A-> B)AG(B — A)) = G(AAB) is false
o Induction-based mechanisms
o (BAG(A->XB)ANANG(B - XA)) = G(AAB)istrue

s> Note they are structural ways to prove the property-based
refinement.

Stefano Tonetta, ASE'13 Tutorial 44

Fitth Part:
OCRA tool support

A tutorial on property-based and contract-based
design of system architectures

Stefano Tonetta, ASE'13 Tutorial

(OCRA tool support

OCRA=0thello Contract Refinement Analysis [CDT13]
Contracts’ assertions specified in Othello.

Textual representation of the architecture.

Built on top of nuXmv for infinite-state model checking.

Integrated with CASE tools:

o AutoFocus3
* Developed by Fortiss.
* For synchronous system architectures.

o CHESS

* Developed by Intecs.
* For SysML and UML modeling.

s One of the few tools supporting contract-based design for embedded
systems.
s Publicly available (for non-commercial purposes) at
https://es.fbk.eu/tools/ocra

8 8 3 8 3

Stefano Tonetta, ASE'13 Tutorial 46

OCRA main features

s Rich component interfaces to specify:
o Input/output ports
o Data/Event ports.
o Including real-time and safety aspects.

s Contracts in temporal logics.

s Temporal formulas used to characterize set of traces over
the ports of components.

Stefano Tonetta, ASE'13 Tutorial 47

OCRA language

COMPONENT system

COMPONENT A

COMPONENT B

Stefano Tonetta, ASE'13 Tutorial

48

Component interface

COMPONENT system
INTERFACE
INPUT PORT x: continuous;
OUTPUT PORT a: boolean;

REFINEMENT
COMPONENT A

COMPONENT B

Stefano Tonetta, ASE'13 Tutorial 49

Othello contracts

COMPONENT simple system
INTERFACE
INPUT PORT x: continuous;
OUTPUT PORT v: boolean;

CONTRACT v_correct
assume: always x>=0;
guarantee: always (x=0 implies v);

REFINEMENT

COMPONENT A

COMPONENT B

Stefano Tonetta, ASE'13 Tutorial 50

(omponent refinement

COMPONENT simple system
INTERFACE
INPUT PORT x: continuous;
OUTPUT PORT v: boolean;

CONTRACT v_correct
assume: always x>=0;
guarantee: always (x=0 implies v);

REFINEMENT
SUB a: A;
SUB b: B;

CONNECTION a.x :=x;
CONNECTION b.y :=a.v;
CONNECTION v:= b.v;

Stefano Tonetta, ASE'13 Tutorial

51

Coniract refinement

COMPONENT simple system
INTERFACE
INPUT PORT x: continuous;
OUTPUT PORT v: boolean;

CONTRACT v_correct
assume: always x>=0;
guarantee: always (x=0 implies v);

REFINEMENT
SUB a: A;
SUB b: B;

CONNECTION a.x :=x;
CONNECTION b.vi := a.v;
CONNECTION v:= b.vo;

CONTRACT v_correct REFINEDBY a.v_correct, b.pass; -

(omplete example

v_correct

simple.oss

Stefano Tonetta, ASE'13 Tutorial 53

OCRA temporal operator

s LTL operators with the following syntax:
o “always” G
o “inthe future” F
o “until” U
o “then” X
o “historically” H
o “inthe past” O
o “since” §
o “previously” Y

Stefano Tonetta, ASE'13 Tutorial 54

OCRA hybrid aspects

s Port types are either
o NuSMV types: “boolean”, enumeratives, ...
o nhuXmv additional types: “real”, “integer”, ...
o “continuous”, i.e. real-value ports evolving continuously in time.
o “event”, i.e. boolean-value port that is assigned only on discrete

transitions.

s Atomic formulas may be:
o Boolean variables.
o Equalities.

o Arithmetic predicates over integer, real, and continuous terms.

Stefano Tonetta, ASE'13 Tutorial 55

OCRA hybrid aspects

s Special function symbols:
“der” denoting the derivative of a continuous variable (e.g., “der(x)=0").
o “next” denoting the next value after a discrete change (e.g. “next(x)=x+1").

“time_until” used to express constraints on the time to the next occurrence of
an event:

* “time_until(e)<=2" means (—e)U.,e
s Syntactic sugar:
o fall(x) means “x=true and next(x)=false”
o rise(x) means “x=false and next(x)=true”
o change(x) means “next(x)!=x"
so Important warning:
o The time model is hybrid with continuous evolution.
o What does “next” mean when time elapses?

o In OCRA/Othello/HRELTL, “next” forces a discrete step:
« “always ((der(timer)=1) and (timer=timeout implies next(timer)=0))”

Stefano Tonetta, ASE'13 Tutorial 56

Commands

ocra_check_syntax
ocra_check_refinement
ocra_check_consistency
ocra_check_implementation
ocra_check_receptiveness

8 838 8 38

Typical script:

set verbose_level 1

set on_failure_script_quits 1

set pp_list cpp

ocra_check_syntax -i SenseSpacecraftRate.oss
ocra_check_refinement

quit

3

o O O O O

so Call: ocra —source SenseSpacecraftRate.cmd

Stefano Tonetta, ASE'13 Tutorial 57

Discrete vs. hybrid

"
s OCRA is parametrized by the logic.

s The expressions can be restricted and interpreted as
discrete-time LTL or hybrid LTL.

s Default is hybrid.
s Set discrete-time to switch to LTL.

Stefano Tonetta, ASE'13 Tutorial 58

Contract refinement results

s For every component, for every refined contract, check
refinement.

s For every proof obligation, check its validity:
o [OK] if valid
o [BOUND OK] if no counterexample found up to k
o [FAIL] if found counterexample

Stefano Tonetta, ASE'13 Tutorial 59

SenseSpacecraitRate Example

eblocks
SenseSpacecraftRate
ocpart»
rateSensorl: FailingRateSensor
< ocpart»
out sensedSpeed: Boolean I:‘_Zl rateSensorSelection: RateSensorSelector
—i—il in sensedSpeedRateSensorl: Boolean out sensedSpeed: BOO|EEFI|_
L
epart out sensedSpeed: Boolean I:_H |—{|
rateSensor?: RateSensor _‘_il in sensedSpeedRateSensor2: Boolean
out sensedSpecd: Booleanl:—); out currentUse: Boolean Y
i itchC tlse: Event
e ”",% e SenseSpacecraftRate.oss
(LN
ocpartn
monitorPresencel: MonitorPresence
. out absencedlarm: Event |
=3| in enabled: Boolean «parts
epart in monitoredPresence: Boolean orBlock: OrBlock
notBlock: NotBlock in in2: Event
T out out: Event| =3
—EI in input: Boolean . wpane in inl: Event
monitorPresence: MonitorPresence
out cutput: BooleaE §|_ =»| inenabled: Boolean
out absenceAlarm: Event |3
-»| inmonitoredPresence: Boolean
60

Considering failures

eblocks
SenseSpacecraftRate
ocpart»
teSensorl: FailingRateSensor
< ocpart»
out sensedSpeed: Boolean I:‘_Zl rateSensorSelection: RateSensorSelector
—i—il in sensedSpeedRateSensorl: Boolean out sensedSpeed: BOO|EEFI|_
L
epart out sensedSpeed: Boolean I:_H |—{|
rateSensor?: RateSensor _‘_il in sensedSpeedRateSensor2: Boolean
out sensedSpeed: Boolean _;l out currentUse: Boolean Y =
in switchCurrentlze: Event
) olefai
AN SenseSpacecraftRate_singlefailure.oss
ocpartn
monitorPresencel: MonitorPresence
. out absencedlarm: Event |
=3| in enabled: Boolean «parts
epart in monitoredPresence: Boolean orBlock: OrBlock
notBlock: NotBlock in in2: Event
T out out: Event| =3
—EI in input: Boolean . wpane in inl: Event
monitorPresence: MonitorPresence
out cutput: BooleaE §|_ =»| inenabled: Boolean
out absenceAlarm: Event |3
-»| inmonitoredPresence: Boolean
61

FE

Plugin for AutoFocus

4 #«Wa00d]

T | #3Modeling

(@, Model Navigator 3% I] CnntractNavigatnr|

=8 Gwasz:;l

=3

ms X

& AF3-ProjectDemo
b 2 CriticalValueMonitor
» 2 InvertedPendulum
P 52 SenseSpacecraftRate
¥ 2 WBS
¥ @ component Architecture Root
v © waes
7 Contracts
¥ @ Bscu
¥ Contracts
» @ or
[yc) Select_Switch
» @ subBscu1
» @ subBscu2
¥ © Hydraulic
7 Contracts
b 2 State Automaton

% Model Markers 53 =] @@ @ %

Severity Explanation
> @ ERROR
& WARNING |

Element

L]
Pedal_Post
L]
Py bscut {fault command
bscu1_fault_monitor
L]

pedal_pos2

bscu2 {Fault command

bscu2_fault_monitor

File

Edit

EMD_AS
© Hydraulic

Brake_Line

valid

0

Model E... &

| type Filter text @|
¥ 61 Analysis

44 TL Specification
v ® component Archil

[c] Component

O Input

@ Output

Code Specificatig
¥ %% Mode Automaton

= Mode Switch Sp
Operator Panel

= Operator Panel
v k] Refinement

@ Refinement Spec
v safety

E | #Modeling

©® wes [flwas 2@‘

& AF3-ProjectDemo
> I CriticalValueMonitor
> &= InvertedPendulum
P i2 SenseSpacecraftRate
¥ = WBS
¥ @ Component Architecture Root
¥ © wss
7 Contracts
¥ @ Bscu
7 Contracts
> ® or
> @ select_Switch
> @ subBScu1
» @ subBscuz
v @ Hydraulic
¥ Contracts

= CONTRACT brake time

< assume:

= always (Pedal_Posl=Pedal_Pos2) and
-- no double fault
= (always ((not bscul fault Monitor) and

(not bscul_fault_Command) and
(not bscu2 fault Moniter)) or

e always ((not bscul fault Monitor) and

(not bscul fault Command) and
(not bscuz_fault_Command)) or

= always ((not bscul fault Monitor) and

(not bscu2_fault_Command) and
(not bscu2_fault_Monitor)) or

e always ((not bscul fault Command) and

- guarantee:
= always (

(not bscu27f§ult7Cummand) and
(not bscu2 fault Monitor)));

(change(Pedal _Posl) or change(Pedal Pos2)) implies
(in the future change(Brake_Line)));

|ypefiltertext |

Model E.. 88 | = O

» & State Automaton

= Properties 3 | %, Contract Reﬂnemenk‘] Tra(e‘ = Cunsule‘

Property

Value

& Model Markers el@lalo % =

Severity Element Explanation

» @ ERROR
& WARNING |

Writable

Stefano Tonetta, ASE'13 Tutorial

Insert

62

Summary

s Contract-based design powerful
o For property refinement
o Safety analysis

s Temporal logic is suitable for component contracts.
s Contract framework parametrized by the logic.

s SMT-based model checking used to reason with expressive
properties.

s> OCRA tool support.

Stefano Tonetta, ASE'13 Tutorial 63

Related work

s Basic concepts on contract-based design for embedded systems:

o Albert Benveniste, Benoit Caillaud, Alberto Ferrari, Leonardo Mangeruca,
Roberto Passerone, and Christos Sofronis. Multiple Viewpoint Contract-Based
Specification and Design. FMCO 200v.

o Manfred Broy: Towards a Theory of Architectural Contracts: - Schemes and
Patterns of Assumption/Promise Based System Specification. Software and
Systems Safety - Specification and Verification 2011: 33-87

o Alberto Sangiovanni-Vincentelli, Werner Damm and Roberto Passerone. Taming
Dr. Frankenstein: Contract-Based Design for Cyber-Physical Systems. European
Journal of Control, 18(3):217-238, 2012.

o Albert Benveniste, Benoit Caillaud, Dejan Nickovic, Roberto Passerone, Jean-
Baptiste Raclet, Philipp Reinkemeier, Alberto L. Sangiovanni-Vincentelli, Werner
Damm, Thomas A. Henzinger, and Kim G. Larsen. Contracts for Systems Design.
Rapport de recherche RR-8147, INRIA, Nov. 2012.

s« META program and AGREE tool by Cofer and colleagues.

o Also on system architecture with temporal logics for assume-guarantee
reasoning.

Stefano Tonetta, ASE'13 Tutorial 64

3 3

8838338 8

3

883

Bibliography

[CGP99] E.M. Clarke, O. Grumberg, D.A. Peled, Model Checking. MIT Press, 1999.

[Szy02] C. Szyperski, Component Software: Beyond Object-Oriented Programming, 2" €%, Boston, MA: Addison-
Wesley, 2002.

[RBH+01] W.P. de Roever, F.S. de Boer, U. Hannemann, J.Hooman, Y. Lakhnech, M. Poel, J. Zwiers, Concurrency
Verification: Introduction to Compositional and Noncompositional Methods. Cambridge University Press 2001.

[BCC+99] A. Biere, A. Cimatti, E.M. Clarke, M. Fujita, Y. Zhu, Symbolic Model Checking Using SAT Procedures
instead of BDDs. DAC 1999: 317-320.

[SSS00] M. Sheeran, S. Singh, G. Stalmarck, Checking Safety Properties Using Induction and a SAT-Solver.
FMCAD 2000: 108-125.

[Brall] A.R. Bradley. SAT-Based Model Checking without Unrolling. VMCAI 2011: 70-87.
[McMO3] K.L. McMillan, Interpolation and SAT-Based Model Checking. CAV 2003: 1-13.
[Ton09] S. Tonetta, Abstract Model Checking without Computing the Abstraction. FM 2009: 89-105.

[CMT11] A. Cimatti, S. Mover, S. Tonetta, HyDI: A Language for Symbolic Hybrid Systems with Discrete
Interaction. EUROMICRO-SEAA 2011: 275-278.

[CMT413] A. Cimatti, S. Mover, S. Tonetta, SMT-based scenario verification for hybrid systems. Formal Methods
in System Design 42(1): 46-66 (2013).

[Pnu77] A. Pnueli, The Temporal Logic of Programs. FOCS 1977: 46-57.
[AHO1] L. de Alfaro, T.A. Henzinger, Interface automata. ESEC / SIGSOFT FSE 2001: 109-120.

[CT12] A. Cimatti, S. Tonetta, A Property-Based Proof System for Contract-Based Design. EUROMICRO-SEAA
2012: 21-28.

[CDT13] A. Cimatti, M. Dorigatti, S. Tonetta. OCRA: A Tool for Checking the Refinement of Temporal Contracts .
ASE 2013.

Stefano Tonetta, ASE'13 Tutorial 65

