Advanced model checking for verification

and safety assessment
Lab 1

May 22-27, 2016

1 Introduction
This laboratory divided into:

1. Getting started
2. Wolf, Cabbage and Goat Puzzle

3. Redundant Sensor (part 1)

2 Getting started

In this warm-up exercise, you will get familiar with nuXmv and try out some commands.
Every SMV model must have a main module, in which variables are defined. VAR

define state variables, i.e., variables that have both a current and next value. IVAR

define input variables (also called transition variables), i.e., variables that are evaluated

in the transition between two states; IVAR’s are used to encode actions and events.
The following snippet of code defines a simple toggle flip-flop:

MODULE main
VAR
X: boolean;
IVAR
i: boolean;

INIT !x;
TRANS i -> next(x) = !x;
TRANS !'i -> next(x) = x;

Initially, x is false, and every time that the input i is set to true, x changes value.
INIT and TRANS are used to define the relation between variables in a relational way.
This is a powerful way of defining constraints in a declarative way. However, it might
be more intuitive to define the evolution of the system in a more imperative way using
the ASSIGN statement:

MODULE main
VAR
X: boolean;
IVAR
i: boolean;

ASSIGN
init(x) := FALSE;
next(x) := case i : !x;
i: x;
esac;

We can specify invariant properties using INVARSPEC, or LTL using LTLSPEC. In the
above model, add:

LTLSPEC G F(x);

Create a file toggle.smv with the model above, and the LTL property. Create a file
script.cmd with the following commands:

go_bmc # Read the model and prepare for SAT based model-checking
check_ltlspec_klive # Verify the LTL property using IC3-Klive

reset # Reset the state of the system

go_bmc

check_ltlspec_bmc # Verify the LTL property using BMC
quit

Scripts can be executed in all the tools (nuXmv, OCRA, xSAP) by running;:
$./nuXmv -source script.cmd toggle.smv

Writing scripts is the recommended way of proceeding, since it makes it easier to
reproduce the results, and make sure that all steps have been performed. However,
sometimes it is useful to experiment with commands. To do so, you can run all the tools
in interactive mode:

$./nuXmv -int toggle.smv

Refer to the nuXmv manual (Section 2) for additional information on the modeling
language. In particular, you might need to read about enumeration types, DEFINES, and
INVAR for this example. Commands and their options are explained in Section 5.

3 Wolf, Cabbage, and Goat

The power of a model-checker lays in its ability to exhaustively analyze each possible
execution of a system. In this exercise, you will model a puzzle using SMV, and then
use the model-checking algorithms to find a solution. The puzzle is a well-known puzzle,
called “Wolf, Cabbage, and Goat”:

A man has to take a wolf, a goat, and a cabbage across a river. His rowboat
has enough room for the man plus either the wolf or the goat or the cabbage.
If he takes the cabbage with him, the wolf will eat the goat. If he takes the
wolf, the goat will eat the cabbage. Only when the man is present are the
goat and the cabbage safe from their enemies. All the same, the man carries
wolf, goat, and cabbage across the river. How?

To help you model this problem try to answer the following questions:
e What are the key-concepts of this problem?
e How would you describe an intermediate state of the system?

e How would you describe a solution?

Nouns and state are usually captured using VARs, while actions are usually captured
using IVARs.

Once the state-space has been defined, you need to express how the state changes. To
simplify debugging of your model, you can either write specifications that you expect to
hold, and model-check them. Since this is a simple example, you can also simulate the
model:

$./nuXmv -int wcg.smv

> go # Use BDD-Based engine to simplify simulation

> pick_state # Pick an initial state for the simulation
> show_trace # Show the current

> simulate -i # Start interactive simulation

You will be presented with all possible transitions, and you need to specify which one
you want to take. Notice that (apart from the first state) all states are expressed as
difference with respect to the first state. This visualization is often used to keep the
output small.

To simplify the writing of the property, use a DEFINE to define the goal state and a
target configuration. You want to write a property that is violated by a solution.

4 Redundant Sensor

In this exercise, you will use OCRA to model a Redundant Sensor system. The modeling
will be done at the architectural level, and then you will implement the single compo-
nents using SMV. Using OCRA, you will generate a new SMV model obtained from

the composition of the single components following the architecture, and perform some
analysis on it.

4.1 Architecture Overview

The architecture is modeled in a compositional way: each component is defined in terms
of its interface with input and output ports specification. The connections within com-
ponents are defined linking the ports of the components pairing an input port with an
output one. A state machine can be associated to each leaf component (i.e. a compo-
nent not further refined) as behavioral model. The behavior of a composite component
(including the top-level component) is given by the composition of such state machines.

In this case the system component (i.e. the top level one) contains three subcompo-
nents: two sensors, and a voter. The voter, in turn, is composed of three monitors and
a selector.

All components ports have a domain or type of data associated. The only types used
in the model are boolean ({TTRUE,FALSE}) and bounded integers, which represent
the readings from the environment and the sensors. The system is at discrete time. All
components have an instantaneous reaction of propagation whereas the Selector has a
reaction that takes one tick of the system. This is necessary to have the last value to
perform the variance check in the monitors. The overall reaction of the system is thus
one tick: the corresponding output for a given input is the one generated in the next
state.

last_monitor1

’ >
-
variance_monitor1

© varMonitor1
-

® 0 sesor1_out
all_s’
- O sensor1_out - Q
~

red H;ng sensoﬁ‘:@g‘tk

.
[J
® GenMonitor + general_monitor D © selector

readmg‘ - - ® out|” (0]
O seasor2_out \
[—' ~ sensor2_out 0 \
fail_s2 ~
sensor\Z:sut
Y
’ > % ® varMonitor2 +variancemonitor§ t

last_monitor2

Figure 1: Architecture layout

Component INPUT Domain ouTPUT Domain
RedundantSensors reading value_domain out value_domain
Sensors In value_domain out value_domain
Voter sensorl value_domain out value_domain
sensor2 value_domain
VarMonitor In value_domain Valid boolean
Last value_domain
GenMonitor Inl value_domain Valid boolean
In2 value_domain
Selector sensorl value_domain out value_domain
sensor2 value_domain
variance_monitorl boolean
variance_monitor2 boolean
general_monitor boolean

Parameters When developing complex systems, it is possible to use the pre-processor
to make the models more understandable and easy to change. It is generally a good idea
to abstract the specific data-types, when possible. The domain of the data variables is
defined by an integer interval between two fixed bounds ({lower_bound..upper_bound}).
The system is then at finite precision values, i.e. the domain of the variables involved in
the system is finite. It is important to notice that in the model the parameters are used
to specify properties and contracts, in particular: max_sensor_error, max_variance,
lower bound and upper_bound. These parameters are contained in the parameter.h
header file. Note that these parameters are arbitrary chosen but fixed. The system is
scalable on all these parameters. In macros.h, some additional functions are defined to
simplify specification.

Task The file System.oss contains part of the architecture defined above. You need
to complete it by defining suitable components, and connecting the input/output ports.

4.2 Modeling Overview

We are going to provide an implementation to each leaf component (i.e., a component
without refinement).

Sensor The nominal behavior is that at each value in input the sensor adds a non-
deterministic but bounded value that simulates the intrinsic error/noise of the sensor.
This error is bounded in absolute value at max_sensor_error. The sensor adds this error
cutting the resulting sum at the domain range and thus the sensor output is always inside
the data domain.

General Monitor The general monitor has two input ports that receive the output of
the sensors. By comparing the two sensor outcomes, the general monitor implements a
failure detection feature in the system. The check is based on the maximum sensor error

assumption: i.e. if the sensors are both correctly working then their reciprocal output
difference in the worst case is twice the maximum sensor error, in particular when one
sensor error is at -max_sensor_error and the other has its error at the other extreme
of the error interval +max_sensor_error. Using this observation we can say that if the
difference of the two sensor outputs is more, in absolute value, than twice the maximum
sensor error, then a failure is surely present in one of the two sensors. The output of
this monitor is a boolean Valid that is equal to true if no failure is detected and false
otherwise:
Valid := |Inl — In2| < 2 x max_sensor_error

The condition for a failure is only sufficient, so when a failure is detected it is surely
present in one of the sensors, but when a failure is not detected not necessarily there is
absence of failures.

Variance monitor There is a variance monitor for each sensor. These monitors imple-
ment the feature of failure isolation in the system, therefore when a failure is detected by
the general monitor then the system tries to isolate which sensor is causing the failure
(it is assumed at top level that the sensors are not both failed at the same time). This
monitor is based on the assumption regarding the input variance. The variance monitor
component is thought to compare the current outcome of a sensor with the last output
of the system. Since the system takes one tick to evaluate an input the value comes out
in the next step. The variance monitor checks the consistency of a sensor output on
the base of its the variance in each tick considering that the system variance is assumed
bounded and that the maximum sensor error is fixed. The reasoning is that if the last
value is considered reliable then:

|real_last — last| < max_sensor_error

Maximum system error reasoning In the worst case the error in module is equal to
the maximum sensor error. If then the input changes as much as possible in a state,
i.e. it changes of the value of the maximum variance and in the current state the sensor
introduces another worst error, then the overall error is finally given in terms of:

error = |last — current| < max_sys_error

where max_sys_error is the maximum between:

Max{2 * mazx_sensor_error, mazx_sensor_error + maz_variance}

This is due to the general monitor guarantee, because the last value given as output
in a failure case with no isolation has the maximum possible error equal to twice the
sensor error. If the maximum variance is less than the maximum sensor error:

Maxr_Sensor_error < max_variance

then the worst case the error is not given by the sum: maz_sensor_error + max_variance,
but by 2*mazx_sensor_error since:

max_sensor_error + mazx_variance < 2 * Mmax_sensor_error

4.3 Selector

This component receives as input the two sensors outputs and the three monitor out-
comes. Using this data the selector gives as output:

e the average of the sensors, or
e the value of one sensor, or
e last value given in output;

The average is necessary to maintain the performances because in the worst case the
general monitor does not detects a failure and one sensor is far from the real input by
its maximum error, then the other sensor is failed but far, in absolute value from the
first sensor by at most twice the max sensor error. In this case the overall error is three
times the max sensor error, doing the average of the two sensor is reducing the error at
twice the maximum sensor error. This component as the name suggests selects the value
to be given as output basing on the information from the monitors, that are the failure
detection and isolation components. After the hierarchy of the FDI system, the selector
primarily controls the general monitor Valid flag, if true then no failure is detected
and the output is the average of the two sensors, if false it checks the variance monitor
flags trying to determine which sensor is failed and isolate the problem. If one variance
monitor valid flag is at false the failure had been isolated on the relative sensor and the
output in this case is the non failed sensor value. If none of the two variance monitors
isolate the failure then the output is the last value given as output. This last value,
when a failure is detected, is reliable because of the assumptions: there are no possible
double failures so if a failure is happening in the current state then in the previous state
there were no failures at all. Indeed the first state is assumed correct and this reasoning
can propagate by induction. Considering that the maximum error of the system in the
previous step is (see 4.2):

|last — current| < max_sys_error

Then the worst error of the system is bounded at this constant max_sys_error that
for definition is equal to the maximum between max variance + max_sensor_error and
2*max_sensor_error.

4.4 Tasks

e Implement the SMV behavior for each leaf component. A stub is given for each
component: Sensor.smv, GenMonitor, VarMonitor, Selector.

e Take a look at the script ocra.cmd. This script performs several checks on the
architecture. Moreover, it combines the SMV implementations using the architec-
ture and the nominal component map (nominal.map). Run the script using the
OCRA tool.

e Under the assumption of bounded variance of the input (i.e., sensors inputs do
not change too much in one step) what properties are satisfied by the System?
Complete the file nuxmv. cmd in order to include a specification for the system. file

Bonus Task The types of the ports are defined within the file parameters.h. The rest
of the model performs arithmetic operations on these values. Can you modify this model
to use infinite domain variables?

Hints:

1. The type real defines real valued variables;
2. Both the architecture and implementations need to be aware of this change;

3. To verify the model, you need to use infinite state commands, (e.g., go_msat).

