
Advanced model checking for verification
and safety assessment

Lab 2

2016-05-XX

1 Introduction

This laboratory divided into:

1. Redundant Sensor (part 2)

2. Bonus Exercise: Mutual Exclusion

and assumes that you have the models from Lab 1.

2 Redundant Sensor

In Lab 1 we developed an architecture for the Redundant Sensor and nominal imple-
mentations for the leaf components.

2.1 Contracts

In contract-based design, we specify the top-level property and decompose it in the sub
components. The following contract should be similar to the property that you verified
at the end of Lab 1. Add it now to the top-level component RedundantSensors:

-- assuming: a bounded variance

-- guarantee: the output error bounded at max_sys_error

CONTRACT system_error

assume: always

(abs_diff(reading, next(reading)) <= max_variance);

guarantee: always

(abs_diff(reading, next(out)) <= max_sys_error);

1



In the refinement section of RedundantSensors, add the following:

CONTRACT system_error

REFINEDBY sensor1.nominal,

sensor2.nominal,

voter.nominal;

This is stating that the contract is refined by the contracts named nominal in the three
subcomponents.

Task

1. Create and define the contracts nominal for Sensor and Voter;

2. Run the script ocra_nominal.cmd. What is the output of ocra_check_refinement
? What is the output of ocra_check_implementation?

To write the contracts, you need to consider the properties that each component
satisfies, as described in Lab 1. The file hint_selector.oss contains the contract for
the selector component, that is the most complex contract. Look at it only if you get
stuck.

2.2 Sensor Faults

The objective of the Redundant Sensor system is to be resilient to the occurrence of a
single fault of a sensor. To check whether the system works, we extend the Sensor in
order to add the bounded fault dynamic described in bounded_fault.smv.

1. Copy Sensor.smv into Sensor_extended.smv;

2. Copy the fault dynamic from bounded_fault.smv within Sensor_extended.smv;

3. Instantiate the fault module within Sensor as VAR random_fault: BoundedFault(0);

4. Modify sensor, so that whenever the fault is active, the output of the sensor is any
possible value from the domain;

5. Copy nominal.map to extended.map, and change the mapping of the Sensor com-
ponent accordingly;

6. Try to answer the following questions before running ocra_extended.cmd:

• Is the contract refinement still valid?

• Are the contracts satisfied by the implementation?

• Is the top-level property/contract satisfied by the overall architecture?

7. Run ocra_extended.cmd. This will generate a file System_extended.smv that
includes the extended Sensors.

2



Extended Analysis For the top-level property to be satisfied, we need to restrict the
behavior of the system a bit further. In particular, we want to assume that initially
there is no fault (neither for sensor1 nor sensor2), and that sensor1 can never fail.

Recall that given an LTL property ϕ, we can add a preconditions ψ by writing ψ− > ϕ.

• Modify nuxmv.cmd in order to include a stronger version of the property Redun-
dantSensor.system error norm guarantee, using the assumptions on the faults de-
scribed above.

To show that the failure of both sensors is a cause of problems for the system, we
compute the fault tree associated with the top-level contract:

RedundantSensors_inst.system_error_norm_guarantee.

To do so, run the script fta.cmd. You should now have two files (events.txt and
gates.txt) that can be opened with the viewer:

$ ./ftv.sh events.txt gates.txt

In the viewer you should see that there is a Minimal Cutset of Cardinality 2 (Figure 1),
meaning that the top-level property is violated if we allow both sensors to fail.

Figure 1: Fault Tree

3 Bonus Exercise: Mutual Exclusion

A typical example of formal methods is their application in multi-threaded programs,
and in particular in mutual exclusion protocols. In the file semaphore.smv you will find
an example of mutual exclusion between two systems.

3



• What features are usually expected of a mutual exclusion protocol?

• Write (at least) two LTL properties to verify those properties. Are they satisfied?

• If they are not satisfied, can you identify why and suggest a fix?

4


