
From Satisfiability to Verification
Modulo Theories

http://www.vmt-lib.org/

Satisfiability Modulo Theories

• Fragments of first order logic

• Symbols interpreted with respect to
background theory
– Arithmetic

– Uninterpreted functions

– Arrays

• Satisfiability modulo the background theory
– Is there a satisfying theory-interpretation for the

the given formula?

SMT-LIB, SMT-COMP

• SMT solvers
– YICES, CVC, OpenSMT, MathSAT, Z3, …

• SMT-LIB initiative
– definition of a standard language
– creation of a large collection of benchmarks

• SMT-COMP
– Compare SMT solvers on common benchmarks
– fostered tremendous progress in the performance

• Other benefits to the field
– Higher quality perception from user base
– Users suggest research directions

Why SMT?

• Many practical problems in verification arise from the
analysis of transition systems that can be naturally
represented in symbolic form within the SMT
framework

• “Modulo theory” as “beyond boolean”
• Some domains “beyond boolean”:

– word-level circuits
– timed systems
– hybrid systems
– microcode
– software

• Industrial users: Microsoft, Intel, RockwellCollins, …

What is not in SMT

• Satisfiability
– One formula, find satisfying assignment
– Combinatorial

• Verification
– One transition system
– Find behaviour of interest
– Sequential

• Key notion
– dynamic aspect implicit in transition system
– Nowhere in SMT

Satisfiability vs Verification

Boolean Modulo

theories

Satisfiability
SAT solvers
DIMACS

SMT solvers
SMT-LIB

Verification Finite state model
checking
AIGER

VMT

The Verification Modulo Theories initiative

• Focus
– verification problems
– for transition systems
– symbolically described in SMT

• Aims:

– Define a standardized language
– Collect a library of benchmarks
– Empower tools community
– Set up a competition
– Launch a workshop

Why SMT-LIB is not enough?

• SMT does not allow for direct modeling of dynamic aspects!
– Reachability
– Termination
– Complex temporal properties

• Doesn’t SMT-LIB contain some verification problems?

– But they are engine-specific problems!
• bounded reachability problems
• proof obligations from inductive proofs

– How about other techniques?
• FRAIG-based analysis?
• Abstraction-refinement at the level of the transition system?
• Combination with finite-state model checking?
• Multiple properties, over-approximated reachability

First-Order Transition systems:
intuitions

• Basic ingredients
– States
– initial states
– transition relation

• Induces a state-transition structure

– Cfr Kripke structure in discrete case
• Each state labeled with true propositions
• An interpretation for boolean state variables
• One transition corresponds to one edge

– Add “theory” information in each world
• Each state has an interpretation for state variables

Symbolic Transition System

• V as vector (current) state variables
– State as assignment to V
– Variables may have complex domains: arrays, maps, relations, …

• V’ as (next) state variables

• I, T as SMT formulae
• I(V) initial states
• T(V, V’) transition relation

• We “only” need a next(.) operator

– next(x) = x + 3

• Remark: next(.) is not a function symbol!
– a decoration to support the automatic generation of the primed variables, …
– and the implicit mapping between current and primed variables

• Remark: we can not have cur_x and next_x

Rigid vs Flexible interpretation

• Rigid: interpretation retained over all states in trace
• Flexible: interpretation can change in different state

• Rigid symbols

– E.g. functional block abstraction, ALU(V)
– Parameters such as threshold to model delays in cyclic

processes

• Flexible symbols

– Time dependent In flow / out flow, unknown analytic form
– Axioms might be used to limit the value of functions

Functional vs Relational

• Next state defined as function of current state:
– next(vi) := Fi(v)

– next(vi) := Fi(v,next(vj<i))

• Next states in relation with current ones
– next(v1) + next(v2) <= v1 + v2

Modeling Style

• Per-variable modeling
– For each variable, state under which conditions it

changes value

• Per-transition modeling
– For each transition, state preconditions and effects on

all variables
– Disjunctive

• Precond & effects

– Conjunctive
• Precond -> effects

– Equivalent only under specific conditions

Modeling constructs

• Which language constructs?
– ASSIGN

– INIT, TRANS, INVAR

• About deadlocks

– Functional approach guarantees deadlock
freedom if functions are total

– Relational approach, invariants: all bets are off…

Components and composition

• Single component vs multiple components
– May be useful at a high level
– Hard to standardize

• Which forms of composition?
– Synchronous
– asynchronous

• Proposal: synchronous
– Logic-based modeling inherently synchronous
– Asynchronous composition requires suitable encoding

• See HyDI language in NuSMV

Inertia

• Logic vs Law of inertia?

– does a variable change if not stated otherwise?

– Suppose next(x) := x +1

– How about y, z, w, …?

• Syntactic sugar?

– Need to identify “affected vars”

Parameterization

• Ground vs paramenterized?

• Some descriptions are parameterized over finite
known domain

– Classical planning
• move-from-to(?b:block, ?f:loc, ?t:loc)

– Security protocols
• send(?m:msg, ?c:chan)

– Grounding upfront may lead to blow ups

Temporal Properties

• Languages to express properties

– Invariants

– Temporal properties (CTL, LTL, RELTL, …)

– Fairness conditions

– Termination

• Single property vs multiple properties

Verification Modulo Theories: Tools

• UCLID
– Mutable functions
– Finite horizon

• VAPOR
– Uninterpreted functions

• SAL
– Parameterized timed/hybrid systems

• MCMT
– Parameterized infinite state systems

• NuSMV
– SMT-based extension, tight integration with MathSAT

• L0: Finite state

• L1: STS

• L2: asynch

• L3: from
discrete to
continuous
traces

Symbolic Transition System

The NuSMV layering

Finite-state Transition System

Boolean engines (SAT solver, BDD
package)

SMT solver

Asynchronous Composition

Continuous traces

Kratos

What is likely out?

• Program-to-program properties
• Equivalence checking
• Refinement checking

• Sequential software requires built-in support for
• Inertia
• Control-flow graph
• Recursion
• Memory model

• Concurrent software
– Various forms of synchronization, preemption, resource

contention, …

• Concrete languages (e.g. MISRA C, AADL)
– Cfr boogie

Links to other initiatives

• SMT-LIB
– Leverage as much as possible

– Ideally, VMT grammar reuses SMT grammar

• NTS competition
– Need to sync

• E.g. role of CFG, inertia

• First step: benchmark conversion

– NIA category in VMT-LIB?

Who is on board?

• We welcome on board everyone interested!

• Idea informally discussed with Leonardo De
Moura, Bruno Dutertre, Viktor Kunchak, Armin
Biere, Sanjit Seshia, and many people in Trento

• Who may be interested
– SAL (Dutertre), UCLID (Sanjit Seshia), NTS (particular

case), MCMT (Ranise, Ghilardi, Bruttomesso), VAPOR
(Sakallah)

• Challenge for the Rich Models Toolkit action?

Next steps

• Public announcement

• Web site

– http://www.vmt-lib.org

• Mailing list at

– vmt-discussion@fbk.eu

• Proposal for concrete VMT language

• Benchmarks collection

Conclusions

• SMT

– Impressive increase of expressiveness

– Limited to combinational case

• VMT

– Same expressiveness

– Lift to natively deal with transition systems

• A new generation of verification engines!

Comments

• Why not joining SMT? [Natasha]
• Control flow graph [Alessandro, Cesar, Marque]

– Reserved keyword/annotation

• Asynchronous composition/Scheduler? [Cesar]
• Fairness in model or in property? [Cesar]

– Fair transition system
– But, careful with fair states/

• Can we deal with quantifiers? [Barbara]
• Can we express games? With quantifiers?

Directly? [Barbara]

