From Satisfiability to Verification
Modulo Theories

Satisfiability Modulo Theories

* Fragments of first order logic
* Symbols interpreted with respect to
background theory

— Arithmetic
— Uninterpreted functions

— Arrays
 Satisfiability modulo the background theory

— Is there a satisfying theory-interpretation for the
the given formula?

SMT-LIB, SMT-COMP

SMT solvers

— YICES, CVC, OpenSMT, MathSAT, Z3, ...
SMT-LIB initiative

— definition of a standard language

— creation of a large collection of benchmarks

SMT-COMP

— Compare SMT solvers on common benchmarks

— fostered tremendous progress in the performance
Other benefits to the field

— Higher quality perception from user base
— Users suggest research directions

Why SMT?

Many practical problems in verification arise from the
analysis of transition systems that can be naturally
represented in symbolic form within the SMT
framework

“Modulo theory” as “beyond boolean”

Some domains “beyond boolean”:
— word-level circuits

— timed systems

— hybrid systems

— microcode

— software

Industrial users: Microsoft, Intel, RockwellCollins, ...

What is not in SMT

» Satisfiability
— One formula, find satisfying assignment
— Combinatorial
e Verification
— One transition system
— Find behaviour of interest
— Sequential

* Key notion
— dynamic aspect implicit in transition system
— Nowhere in SMT

Satisfiability vs Verification

Boolean Modulo

theories

()
SAT solvers SMT solvers
DIMACS _ SMT-LIB
e : (X X X J l 000 ‘
Verification

Finite state model
checking VMT
AIGER

Satisfiability

The Verification Modulo Theories initiative

* Focus
— verification problems
— for transition systems
— symbolically described in SMT

* Aims:
— Define a standardized language
— Collect a library of benchmarks
— Empower tools community
— Set up a competition
— Launch a workshop

Why SMT-LIB is not enough?

 SMT does not allow for direct modeling of dynamic aspects!
— Reachability
— Termination
— Complex temporal properties

 Doesn’t SMT-LIB contain some verification problems?

— But they are engine-specific problems!
* bounded reachability problems
* proof obligations from inductive proofs

— How about other techniques?
* FRAIG-based analysis?
* Abstraction-refinement at the level of the transition system?
e Combination with finite-state model checking?
* Multiple properties, over-approximated reachability

First-Order Transition systems:
intuitions

e Basic ingredients
— States
— initial states
— transition relation

* |Induces a state-transition structure

— Cfr Kripke structure in discrete case
e Each state labeled with true propositions
* An interpretation for boolean state variables
* One transition corresponds to one edge
— Add “theory” information in each world
* Each state has an interpretation for state variables

Symbolic Transition System

V as vector (current) state variables

— State as assighment to V

— Variables may have complex domains: arrays, maps, relations, ...
V’ as (next) state variables

|, T as SMT formulae
I(V) initial states
T(V, V’) transition relation

We “only” need a next (.) operator
— next (x) x + 3

Remark: next (.) is nota function symbol!

— adecoration to support the automatic generation of the primed variables, ...
— and the implicit mapping between current and primed variables

Remark: we can not have cur x and next x

Rigid vs Flexible interpretation

Rigid: interpretation retained over all states in trace
Flexible: interpretation can change in different state

Rigid symbols
— E.g. functional block abstraction, ALU(V)

— Parameters such as threshold to model delays in cyclic
processes

Flexible symbols
— Time dependent In flow / out flow, unknown analytic form
— Axioms might be used to limit the value of functions

Functional vs Relational

* Next state defined as function of current state:
—next(v,) := F.(v)

—next(v;) := F,(v,next(v,.))

e Next states in relation with current ones

—next (v;) + next(v,) <= v; + v,

Modeling Style

* Per-variable modeling
— For each variable, state under which conditions it
changes value

e Per-transition modeling

— For each transition, state preconditions and effects on
all variables

— Disjunctive
* Precond & effects

— Conjunctive
 Precond -> effects

— Equivalent only under specific conditions

Modeling constructs

 Which language constructs?
— ASSIGN
— INIT, TRANS, INVAR

 About deadlocks

— Functional approach guarantees deadlock
freedom if functions are total

— Relational approach, invariants: all bets are off...

Components and composition

* Single component vs multiple components

— May be useful at a high level
— Hard to standardize

 Which forms of composition?
— Synchronous
— asynchronous

* Proposal: synchronous

— Logic-based modeling inherently synchronous

— Asynchronous composition requires suitable encoding
e See HyDI language in NuSMV

Inertia

* Logic vs Law of inertia?
— does a variable change if not stated otherwise?
— Suppose next (x) := x +1
— How abouty, z, w, ...7

* Syntactic sugar?

— Need to identify “affected vars”

Parameterization

* Ground vs paramenterized?

 Some descriptions are parameterized over finite
known domain

— Classical planning
* move-from-to (?b:block, ?f:loc, ?t:loc)

— Security protocols

* send(?m:msg, 7?c:chan)

— Grounding upfront may lead to blow ups

Temporal Properties

* Languages to express properties
— Invariants
— Temporal properties (CTL, LTL, RELTL, ...)
— Fairness conditions
— Termination

* Single property vs multiple properties

Verification Modulo Theories: Tools

 UCLID

— Mutable functions
— Finite horizon

VAPOR
— Uninterpreted functions

* SAL

— Parameterized timed/hybrid systems
MCMT

— Parameterized infinite state systems

NuSMV
— SMT-based extension, tight integration with MathSAT

The NuSMV layering

| 1: STS

_2: asynCh Asynchronous Composition

L3: from

. Symbolic Transition System
discrete to
continuous Finite-state Transition System

traces Bool [SAT sol BDD
oolean engines (SAT solver, SMT solver
package)

What is likely out?

Program-to-program properties
* Equivalence checking
e Refinement checking
Sequential software requires built-in support for

* |nertia

e Control-flow graph
* Recursion

e Memory model

Concurrent software

— Various forms of synchronization, preemption, resource
contention, ...

Concrete languages (e.g. MISRA C, AADL)
— Cfr boogie

Links to other initiatives

* SMT-LIB

— Leverage as much as possible
— Ideally, VMT grammar reuses SMT grammar

* NTS competition

— Need to sync
* E.g. role of CFG, inertia
* First step: benchmark conversion

— NIA category in VMT-LIB?

Who is on board?

We welcome on board everyone interested!

ldea informally discussed with Leonardo De
Moura, Bruno Dutertre, Viktor Kunchak, Armin
Biere, Sanjit Seshia, and many people in Trento

Who may be interested

— SAL (Dutertre), UCLID (Sanjit Seshia), NTS (particular
case), MCMT (Ranise, Ghilardi, Bruttomesso), VAPOR
(Sakallah)

Challenge for the Rich Models Toolkit action?

Next steps

Public announcement

Web site
— http://www.vmt-lib.org

Mailing list at
— vmt-discussion@fbk.eu

Proposal for concrete VMT language
Benchmarks collection

Conclusions

* SMT

— Impressive increase of expressiveness
— Limited to combinational case

* VMT

— Same expressiveness
— Lift to natively deal with transition systems

* A new generation of verification engines!

Comments

Why not joining SMT? [Natasha]

Control flow graph [Alessandro, Cesar, Marque]
— Reserved keyword/annotation

Asynchronous composition/Scheduler? [Cesar]
Fairness in model or in property? [Cesar]

— Fair transition system
— But, careful with fair states/

Can we deal with quantifiers? [Barbara]

Can we express games? With quantifiers?
Directly? [Barbara]

